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Abstracts 
 
One frequently encountered problem in scientific research is to assess whether two 
regression models for two groups or two treatments, etc., are the same or not. 
However, the regression models rarely hold over the whole space of the covariates. 
Therefore testing the difference between the two models over a restricted region or an 
arbitrary interval one is interested is therefore useful. In this paper, we develop testing 
procedures to detect if one regression line is strictly greater than the other for given a 
specific region. Our testing procedures are developed mainly based on the concept of 
generalized p-value (GPV), which has been successfully used to provide small sample 
solutions for many hypothesis testing problems when nuisance parameters are present.  
Moreover, detailed statistical simulation studies will be conducted to evaluate the 
effectiveness by using their empirical size and power of the proposed procedures. 
 
Keywords: Generalized pivotal quantities, Generalized test variables, Over a finite 
interval 
 
 
1. Introduction 
Often we are interested in the difference between the two regression models only over 
a restricted region of the covariates. Therefore comparing of two regression lines over 
the whole space of covariates is likely to be neither efficient if only the differences 
over a restricted region are of interest, nor appropriate if the models hold only over 
certain restricted region. For example, one may want to determine if the regression of 
Y on x for one set of observations is uniformly greater than that of the other over an 
arbitrary finite interval I =	ሾݔ୐,  ୙ሿ when given two independent sets of bivariateݔ
observations, ሺݔଵଵ, ଵܻଵሻ, ሺݔଵଶ, ଵܻଶሻ, … , ሺݔଵ୬భ, ଵܻ୬భሻ , and ሺݔଶଵ, ଶܻଵሻ, ሺݔଶଶ, ଶܻଶሻ , 
… , ሺݔଶ୬మ, ଶܻ୬మሻ. In fact, this problem has been widely discussed in various practical 
applications, such as biological applications, pharmaceutical bioequivalence, 
educational or psychological issues, etc. It was tackled by Tsutakawa and Hewett 
(1978) (henceforth abbreviated as T-H) under the following assumption. Given the 
values of the independent variables, xij , the two sets of observations, ࢅ୧ , are 

independent and normal with E൫YijหXijൌxij൯ൌαi൅βixij  and Var൫YijหXijൌxij൯ ൌ σଶ , 
where ሺߙ୧, ୧ሻሺiߚ ൌ 1,2; j ൌ 1,2, … , n୧ሻ and σଶ ൐ 0 are unknown parameters. They 
first considered the joint distribution of the distances between the two regression lines 
at ݔ୐ and ݔ୙ to solve this problem. The study was motivated by a set of experiments 
conducted by Soler-Argilaga and Heimberg (1976), which were designed to study the 
effect of sex on hepatic metabolism of free fatty acid (FFA). One of the questions 
asked was whether the amount of coleic acid incorporated in triglyceride, Y, is strictly 
higher for female rats than for male rats, regardless of the FFA uptake, x, over a 
specified region. They especially noted that there was a physical limitation to the 
amount of x that the rats could tolerate and over which the experiment was meaningful. 
Therefore, the issue for comparing of two regression lines over a finite interval is very 
important. Some related literatures proposed testing procedures for comparing two 
regression lines, for instance, e.g., see Hewett and Lababidi (1980), Spurrier et al. 
(1982), Hill and Padmanabhan (1984), etc. Note that they all need the assumption of 



homogeneous variance for each regression line. 
As indicated earlier, T-H procedure utilizes the joint distribution of the distances 

between the two regression lines at ݔ୐  and ݔ୙  and assumes normality with 
homogeneous variance. However, they actually didn’t derive the sampling distribution 
of the order statistic which is required in their study. Since it is very complicated, this 
makes establishing the exact test very difficult. In this paper, we shall make an attempt 
to provide alternative testing procedures based on a specific region of the covariate by 
the GPV. Tsui and Weerahandi (1989) suggest the use of the GPV for the construction 
of hypothesis testing procedures. Together with the generalized confidence interval 
(GCI), the GPV has been successfully applied to provide inferences for tolerance 
intervals by Liao et al. (2005), population and individual bioequivalence by McNally, 
et al. (2003), variance components by Mathew and Webb (2005), multivariate analysis 
of variance by Gamage et al. (2004), and non-inferiority test by Li et al. (2008). As a 
result, we propose to apply the concept of the GPV to construct a testing procedure for 
comparing the regression lines over a finite interval. It is worth to say that the 
proposed test based on the GPV without the assumption of identical variance are much 
more practical than tests with this assumption. In the next section, the proposed test 
using the GPV is given. Section 3 presents the results of simulation studies. Finally, 
the conclusion and some remarks are provided in the last section. 
 
2. The Test Based on GPV 
Suppose that X is a random sample whose distribution depends on a vector of 
unknown parameters ૊ ൌ ሺߠ, િሻ, where  is a parameter of interest and  is a vector 
of nuisance parameters. Let x be the observed value of X. A test variable ܶሺ܆; ,ܠ ાሻ is 
said to be a generalized test variable (GTV) if it satisfies the following three 
conditions: 

(a) ܶሺܠ; ,ܠ ાሻ does not depend on unknown parameters. 
(b) For a specified , the distribution of ܶሺ܆; ,ܠ ાሻ is free of . 
(c) For fixed x and , ܲሾܶሺ܆; ,ܠ ાሻ ൑  .ሿ is monotonic in ߠ|ݐ
Denote ܶ ൌ ܶሺ܆; ,ܠ ાሻ  and ݐ୭ୠୱ ൌ ܶሺܠ; ,ܠ ાሻ. Without loss of generality, we 

consider the one-sided test that ܪ଴: ߠ ൑ :ଵܪ ଴ versusߜ ߠ ൐  ଴. If the test function Tߜ
is stochastically increasing in , then the GPV is defined as 

ܲ ൌ supఏஸఋబሾܶ ൒ ሿߠ|୭ୠୱݐ ൌ ܲሾܶ ൒  .଴ሿߜ|୭ୠୱݐ
For the test with a nominal significance level , one typically rejects the null 
hypothesis if p < . 

To set the notation, consider the following statistical model: 
୧୨ݕ ൌ ୧ߙ ൅ ୧୨ݔ୧ߚ ൅  ,୧୨ߝ

where ݕ୧୨ is the jth observed response for the ith treatment group, ߙ୧ is the ith 
intercept, ݔ୧୨ is the jth covariate response for the ith treatment group, ߚ୧ is the slope 
parameter associated with the covariate for the ith treatment group, and ߝ୧୨  is 
unobservable random error, where i ൌ 1,2	and	j ൌ 1,2, … , n୧. It is usually assumed 
that ߝ୧୨ ∼ ܰሺ0, ୧ߪ

ଶሻ where ߪ୧
ଶs are unknown. More specifically, let ߙො୧ and ߚመ୧ be 

the least squares estimates of ߙ୧  and ߚ୧ , respectively. And let 
୧ܧܵܯ ൌ ∑ ሺy୧୨ െ ො୧୨ሻଶݕ

୬౟
୨ୀଵ ሺn୧ െ 2ሻ⁄  be the estimate of ߪ୧

ଶ, where ݕො୧୨ ൌ ො୧ߙ ൅  ୧୨, andݔመ୧ߚ

n ൌ ∑ n୧
ଶ
୧ୀଵ . Given the interval I =	ሾݔ୐,  ୙ be the distance betweenߠ ୐ andߠ ୙ሿ, letݔ

the two regression lines at ݔ୐ and ݔ୙, respectively. Namely, 

൜
୐ߠ ൌ ሺߙଵ െ ଶሻߙ ൅ ሺߚଵ െ ଶሻX୐ߚ
୙ߠ ൌ ሺߙଵ െ ଶሻߙ ൅ ሺߚଵ െ ଶሻX୙ߚ

. 

In this paper, we propose an alternative testing procedure other than T-H method 
to determine whether one regression line is strictly greater than the other for a specific 
region. Typically, the hypothesis for one-sided test is considered as follows: 

൜
଴ܪ ∈ ሼሺθ୐, θ୙ሻ: ሾθ୐ ൑ 0	and	θ୙ ൒ 0ሿ, ሾθ୐ ൒ 0	and	θ୙ ൑ 0ሿ	or	ሾθ୐ ൏ 0	and	θ୙ ൏ 0ሿሽ
ଵܪ ∈ ሼሺθ୐, θ୙ሻ: θ୐ ൐ 0	and	θ୙ ൐ 0ሽ

. 



The sampling distributions of the estimated regression coefficients ߙොଵ, ,መଵߚ  ොଶ andߙ
 :መଶ are as followsߚ
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It is assumed that observable statistics ߙොଵ, ,መଵߚ ,ොଶߙ  ଶ are availableܧܵܯ	ଵandܧܵܯ,መଶߚ
such that 
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Subsequently, we may adopt the following procedure to make decision. 
1. Obtain the generalized pivotal quantities (GPQs) of σଵ

ଶ, σଶ
ଶ, ,ଵߙ ,ଵߚ ,ଶߙ  ଶߚ

denoted by ܴσభమ, ܴσమమ, ܴఈభ, ܴఉభ, ܴఈమ	and ܴఉమ, respectively. From these GPQs, we 

can separately obtain the GPQ of ߠ୐ and ߠ୙, ܴఏై	and ܴఏ౑. Then the GTV of 
݉݅݊ሺߠ୐,  ୙ሻ for the test is given byߠ

௠ܶ௜௡ሼఏై,ఏ౑ሽ ൌ ܴ௠௜௡ሼఏై,ఏ౑ሽ െ ݉݅݊ሼߠ୐,  .୙ሽߠ
2. Next the desired GPV of ݉݅݊ሺߠ୐,  ,୙ሻߠ

ܲ൫ ௠ܶ௜௡ሼఏై,ఏ౑ሽ ൑ ଴൯ܪ|௠௜௡ሼఏై,ఏ౑ሽݐ ൌ ܲ൫ܴ௠௜௡ሼఏై,ఏ౑ሽ ൑ ݉݅݊ሼߠ୐,  ,଴൯ܪ|୙ሽߠ
can be computed by using Monte-Carlo algorithm. Note that the GPVP is 
abbreviate from the pooled variance and GPVI is from individual variance. 

3. If ߙ is the specified level of significance, we can conclude that line 1 lies 
uniformly above line 2 over [ݔ୐, ݔ୙] when GPV< . 

 
3. Simulation Studies 
To evaluate the performance of the proposed procedure, the following simulation 
study is conducted based on Bishop’s example on kidney in T-H. We first specify the 
values of ߙ ൌ 0.05. For fixed ߙଵ ൌ ଵߚ ,400 ൌ 20, σଵ ൌ 100, and specified values 
of ݊ଵ, 	݊ଶ, ߠ୐ σଵ⁄  and ߠ୙ σଵ⁄ , we generate a normal random deviate X from the 
distribution ܰሺ39,13ሻ and ߝ୧୨ ∼ ܰሺ0, σ୧ሻ with some ratios of σଵ to σଶ. In order to 
give some insight on the effect of specific region, the intervals Iଵ ൌ ሾ26,52ሿ, Iଶ ൌ
ሾ34,52ሿ, Iଷ ൌ ሾ26,44ሿ, Iସ ൌ ሾ34,44ሿ are considered. We fixed K=2,500 in the Monte 
Carlo algorithm in computing the desired GPV. The procedure is repeated 2,500 times 
for each parameter combinations. The partial results are displayed in Tables 1 and 2. 

Table 1 demonstrates how the power increases as ߠ୐ σଵ⁄  or ߠ୙ σଵ⁄  increase for 
a given interval. For Iଵ we can see that the power approaches 5% when either ߠ୐ σଵ⁄  
or ߠ୙ σଵ⁄  equals 0. This supports the fact that the test has size 5% when equal sample 
size. Table 1 and Table 2 also illustrate that when we have nested intervals, the power 
increases as the width of the interval decreases. From Table 2, the power increases as 
equal sample size increase for a given region. When equal sample size, the three 
methods have similar performance. However, if different variance and unequal sample 
size both exist, the GPVI method is proposed.



 
 
 

Table 1  Powers of size 5% tests for four intervals by three methods 
with σଵ: σଶ=1:1 and ݊ଵ ൌ ݊ଶ ൌ 25. 

݊ଵ ൌ ݊ଶ ൌ 25 
୙ߠ σଵ⁄  

-1 0 1 2 
method T-H GPVP GPVI T-H GPVP GPVI T-H GPVP GPVI T-H GPVP GPVI 

୐ߠ
σଵ

 

-1 

Iଵ       # # # # # # 
Iଶ       0.001 0.003 0.002 0.017 0.028 0.024  
Iଷ       # # # # # # 
Iସ       0.001 0.003 0.002 0.017 0.028 0.024  

0 

Iଵ    # * # * # * 0.028* 0.029* 0.028* 0.040* 0.050* 0.046* 
Iଶ    0.006* 0.006* 0.005* 0.204 0.200 0.188 0.608 0.626 0.610  
Iଷ    0.003* 0.003* 0.003* 0.035* 0.039* 0.036* 0.040* 0.050* 0.047* 
Iସ    0.012* 0.014* 0.012* 0.223 0.229 0.218 0.609 0.626 0.612 

1 

Iଵ # # # 0.028* 0.026* 0.024* 0.551 0.544 0.520 0.746 0.764 0.750  
Iଶ # # # 0.037* 0.043* 0.038* 0.706 0.712 0.695 0.988 0.991 0.990  
Iଷ 0.002 0.004 0.004 0.202 0.201 0.189 0.701 0.707 0.670 0.748 0.766 0.754 
Iସ 0.002 0.004 0.004 0.222 0.236 0.218 0.870 0.877 0.870 0.991 0.992 0.992 

2 

Iଵ # # # 0.042* 0.053* 0.049* 0.756 0.772 0.760 0.993 0.994 0.994  
Iଶ # # # 0.042* 0.054* 0.050* 0.760 0.778 0.766 0.996 0.997 0.998  
Iଷ 0.023 0.033 0.028 0.612 0.630 0.616 0.988 0.992 0.990 0.997 0.997 0.997  
Iସ 0.023 0.033 0.029 0.612 0.632 0.618 0.992 0.995 0.994 1.000 1.000 1.000  

 # is <0.001 and * is empirical size. 



Table 2  Powers of the tests for four intervals by three methods with σଵ: σଶ=1:2, 
୐ߠ σଵ⁄ ൌ 1 and ߠ୙ σଵ⁄ =2 when two lines tend to be of the megaphone type. 

    Method 1n  25 50 100 

interval 2n  25 50 100 25 50 25 100 

Iଵ ൌ ሾ26,52ሿ 
T-H 0.375 0.442 0.497 0.560 0.706 0.681 0.920 

GPVP 0.372 0.429 0.487 0.567 0.708 0.688 0.923 
GPVI 0.350 0.585 0.774 0.394 0.705 0.436 0.920 

Iଶ ൌ ሾ34,52ሿ 
T-H 0.762 0.872 0.941 0.877 0.976 0.940  1.000 

GPVP 0.765 0.866 0.932 0.883 0.976 0.947 1.000 
GPVI 0.748 0.939 0.991 0.770 0.976 0.820  1.000 

Iଷ ൌ ሾ26,44ሿ 
T-H 0.413 0.456 0.505 0.583 0.708 0.698 0.920 

GPVP 0.424 0.456 0.509 0.594 0.717 0.705 0.923 
GPVI 0.409 0.600 0.776 0.438 0.713 0.480  0.920 

Iସ ൌ ሾ34,44ሿ 
T-H 0.812 0.895 0.952 0.904 0.980 0.958 1.000 

GPVP 0.820 0.899 0.952 0.920 0.981 0.964 1.000 
GPVI 0.808 0.958 0.992 0.825 0.979 0.866 1.000 

 
4. Conclusions 
This study provides the testing procedure to determine if one regression line is strictly 
greater than the other for given a specific region by using the GPV method. It can be 
applicable to the heterogeneous error variance and is much more practical than T-H 
method. According to the simulation results, the three methods are about the same 
performance when equal sample size. The GPVI method is proposed when different 
variance and unequal sample size. Therefore, it is shown that the use of GPV allow the 
testing fairly straightforward and satisfactory. We note that at ሺߠ୐, ୙ሻߠ ൌ ሺ0, 0ሻ, the 
power could be well below 5%, in contrast to procedures designed to test the equality 
of two regression lines. 
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