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Abstract

We study maximum likelihood estimation of the population mean for a survey experiencing unit

nonresponse, i.e., when a sampled unit does not respond to the entire survey. We consider situations

where post-stratification information is externally available for the population. Without external

information, unit nonresponse, may lead to missing-data (MD) mechanisms that are Missing Not

at Random (MNAR), which generally require a model for the missing-data mechanism. We show

that when the response mechanism is governed by a post-stratifier, incorporating such information

into the likelihood enables us to fit models to data that are MNAR to obtain maximum likelihood

estimates without the need to model the MD mechanism. This framework is then extended to

also incorporate covariate information that is fully observed for the sampled units. We compare

and contrast the proposed model-based methods to existing design-based methods empirically for

incomplete categorical data.

Keywords: Maximum Likelihood (ML); Non-ignorable; Unit nonresponse.

1. Introduction

We study estimation of the finite population mean in the presence of post-stratification
(PS) information, for a survey experiencing unit nonresponse, i.e., when a sampled
unit does not respond to the entire survey. We allow the PS variables to be any vari-
able – categorical [Holt and Smith, 1979] as well as continuous [Deville and Sarndal,
1992] – that are available through external sources, other than the survey of interest,
and can be observed on the population, or the sample when used for nonresponse
adjustment.

Let Y denote the survey variable of interest, Z the PS variables that are avail-
able from an external source, and X the vector of covariates, that are observed on
the entire sample. We assume a simple random sample (SRS) of size n is drawn
from a finite population of size N , and r of the n units respond. Two general
modes of survey inference consist of design (randomization) and model-based infer-
ence. The former treats the survey variables Y as fixed and inferences are based
on the the distribution of sample inclusion indicators, while the latter treats the
survey outcomes as random variables, which are assigned a statistical model. The
‘quasi-randomization’ approach to weighting adjustment extends the design-base
paradigm, by treating survey response as an additional phase of random sampling
[Oh and Scheuren, 1983] and estimating the response probability to adjust the ini-
tial survey weights. Weighting classes are used to adjust the initial survey weights
and the response probabilities are estimated using (i) information recorded for re-
spondents and nonrespondents when covariate information is available for the entire
sample or (ii) the number of units in each post-strata, when discrete PS variables
are available at the population level. Calibration weighting is commonly used to
adjust for unit nonresponse when continuous post-strata are available [Deville and
Sarndal, 1992, Kott and Chang, 2010]
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Alternatively, one can use a model to predict Y for nonrespondents. The chal-
lenge is that unit nonresponse often leads to MD mechanisms that are nonignorable,
which generally requires the MD mechanism to be modeled. We explore a modeling
strategy that exploits the external information to achieve maximal information re-
trieval and weakens the Missing at Random (MAR) assumption, leading to reliable
estimates without the need to model the response mechanism.

2. Unit nonresponse with Post-Stratification Information

Assume that the marginal distribution of Z is externally available for the entire
population, in addition to Z and Y being jointly observed only for the respondents.
Figure 1 (Panel a) displays the observed data matrix, where Ri = 1{unit i responds}
and z?i = zπ(i), i = 1, . . . , N and π(i) is a permutation of the indexes of i. For
illustrative purposes, we assume that X and Z are univariate and consider the
following response model

logitP(Ri = 1|(Zi, Yi) = (zi, yi), ψ) = ψ0 + ψ1zi, i = 1, . . . , n, (1)

where ψ = (ψ0, ψ1)t denotes the parameters underlying the missing mechanism. If
the post-stratifier Z was observed for all units in the sample, then Eq. (1) gives

P(Ri = 1|Zi, Yi) = P(Ri = 1|Zi). (2)

This would imply that the data is MAR. However, since the values {zi} of Z are
not known for nonrespondents in the sample, Eq. (2) is violated. Hence the data
are Missing Not at Random (MNAR) in the classical sense defined by Rubin [1976].

The model-based estimator of Ȳ = 1
N

∑N
i=1 yi, can be obtained via Ȳmodel =
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Figure 1: Data matrices for (a) motivating example and (b) general scenario.

1
n

∑r
i=1 yi + 1

n

∑n
i=r+1 ŷi. Letting θy.z denote the parameters of the conditional

distribution of Y given Z, the superscripts 1 and 0 to denote the observed and
missing observations, and assuming independence over units and distinctness of θy.z
and ϕ, a Pattern Mixture Model (PMM) [Little, 1993] for (Y |Z) is

fY,R|Z(Ri, yi|zi, θy.z, ϕ) = fY |R,Z(yi|zi, Ri, θ
(Ri)
y.z )fR|Z(Ri|zi, ϕ),

Without loss of generality, let z̃i denote a reordering of the z?i s so that the first r
units match the observed values of zi, i = 1, . . . , r. The observed likelihood over the
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entire superpopulation is

L(θy.z, ϕ, θz|Ri, yi, zi) =

r∏
i=1

fY |R,Z(yi|zi, Ri = 1, θ(1)y.z)P (Ri = 1|zi, ϕ)

r∏
i=1

fZ(zi|θz)

N∏
i=r+1

fZ(z̃i|θz)

=

r∏
i=1

fY |R,Z(yi|zi, Ri = 1, θ(1)y.z)P (Ri = 1|zi, ϕ)

N∏
i=1

fZ(zi|θz).

where θz indexes the marginal distribution of Z. The last line follows since the prod-
uct is unchanged by permutations, and hence

∏N
i=1 fZ(z̃i|θz) =

∏N
i=1 fZ(z?i |θz) =∏N

i=1 fZ(zi|θz). Equation (1) implies that θ
(1)
y.z = θ

(0)
y.z = θy.z, and so the parame-

ters can be estimated directly by maximizing the above likelihood. According to
Eq. (1), the distribution of Z differs between respondents and nonrespondents, and
the MD mechanism is MNAR in the classical definition proposed by Rubin [1976].
Nonetheless, we see that in the presence of a post-stratifier Z, one can ignore the
missing data mechanism for likelihood-based inference. Using [.] to denote the dis-
tribution, [Y |Z,R = 1] = [Y |Z,R = 0] = [Y |Z] is estimable from the respondent
sample. Moreover, the PS information provides us [Z] at the population level, thus
[Y,Z] = [Y |Z][Z] can be estimated for any type of Y , and any conditional relation-
ship between Z and Y .

3. Unit nonresponse with Post-Stratification and Covariate Information

We now extend the methodology in Section 2 to situations where a covariate X is
also observed for the entire sample. Figure 1 (Panel b) displays the observed data
matrix. We consider the following response model

logitP(Ri = 1|(Xi, Yi, Zi) = (xi, yi, zi), ψ) = ψ0 + ψ1xi + ψ2zi, i = 1, . . . , n (3)

and the following general forms of data generating models for X, Y , and Z

gz(Z) = β0 + β1X + εz (4)

gy(Y ) = η0 + η1X + η2Z + εy,

where gz and gy are suitable links for generalized linear models. Factorizing the joint
distribution ofX, Z and Y as [X,Z, Y ] = [Y |X,Z][X,Z], we see that [Y |X,Z,R = 0]
can be estimated by regressing Y on X and Z, and according to (3) its parameters
are fully identified based on the respondents data. We will thus focus on the joint
distribution of X,Z,R. Suppose the conditional distribution of Z given X is in-
dexed by the parameter vector θz.x, and θx indexes the marginal distribution of X.
Assuming independence over units and distinctness of these parameters, a PMM for
the distribution of (X,Z) is

fX,Z,R(xi, zi, Ri|θ, ϕ) = fZ|X,R(zi|xi, Ri|θ(Ri)
z.x , ϕ)fX|R(xi|Ri, θ

(Ri)
x , ϕ)fR(Ri|ϕ).

The observed likelihood over the entire superpopulation is then

L(θz.x, θx, ϕ|xi, zi, Ri) =

n∏
i=r+1

fX|R(xi|Ri, θ
(0)
x )P (Ri = 0|ϕ) (5)

×
r∏

i=1

fZ|X,R(zi|xi, Ri = 1, θ(1)z.x)fX|R(xi|Ri, θ
(1)
x )P (Ri = 1|ϕ)

N∏
i=1

fZ(z?i |θz).

We explore this empirically via simulations presented in Section 4.
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Table 1: Model for [Y |X,Z]

Model βX βZ βXZ

[XZ]Y1 2 2 2
[XZ]Y2 0 0 2
[X + Z]Y 2 2 0
[X]Y 2 0 0
[Z]Y 0 2 0
[φ]Y 0 0 0

Table 2: Model for [R|X,Z, Y ]

Model ψX ψZ ψXZ ψY

[X + Z +XZ + Y ]R 2 2 2 2
[X + Z +XZ]R 2 2 2 0
[X + Z + Y ]R 2 2 0 2
[X + Z]R 2 2 0 0
[X]R 2 0 0 0
[Z]R 0 2 0 0
[φ]R 0 0 0 0

4. Simulation study

For the purpose of exploration and to avoid distributional assumptions, we consider
all variables of interest to be binary and univariate. We assume that X and R are
observed for the entire sample, Z and Y are observed for the respondents and a
supplemental margin on Z is available from external data (e.g. a census).

We factorize the joint distribution as [Z,X, Y,R] = [Z,X][Y |Z,X][R|Z,X, Y ],
and assume [Z,X] to follow a multinomial distribution with P(X = Z = 0) = .2,
P(Z = 0, X = 1) = .5, P(X = 0, Z = 1) = .3 and P(X = Z = 1) = .1. We consider
a logistic model for [Y |X,Z] P(Y = 1|X,Z) = .5 + βX(X − X̄) + βZ(Z − Z̄) +
βXZ(X − X̄)(Z− Z̄) for six choices of β = (βX , βZ , βXZ) shown in Table 1. Finally,
we consider the response indicator [R|X,Z, Y ] to follow logitP(R = 1|X,Z, Y ) =
.5 +ψX(X − X̄) +ψZ(Z − Z̄) +ψXZ(X − X̄)(Z − Z̄) +ψY (Y − Ȳ ) for seven choices
of ψ = (ψX , ψZ , ψXZ , ψY ) displayed in Table 2.

Populations of size 100,000 were generated to avoid the presence of structural
zeros. When PS information is available on the population, the population pro-
portions Nj/N are known. Maximum likelihood estimates are obtained by first
estimating the distribution [X,Z] for nonrespondents, and then using them to pre-
dict [Y |X,Z,R = 0] when missingness depends on X and Z. The joint distribution
of X,Z can be estimated using the methods described in Section 3 and the con-
ditional distribution of [Y |X,Z] is estimated by fitting a logistic regression of Y
on X and Z, where both an additive model and one with an XZ interaction term
are considered. We estimated the finite population mean via complete-case analysis
(CC), ML based on a saturated (M1) and additive (M2) logistic regression model,
Weighted class estimates based on X and ignoring Z (NR), based on Z and ignoring
X (PS) and adjusted using X, followed by Z (NRPS).

Table 3 displays the simulation results for a sample of size 1000. The first two
columns display the true models for [R|X,Z, Y ] and [Y |X,Z] respectively. The root
mean square error (RMSE) and absolute empirical bias are displayed as a percentage
of the true value of Ȳ and the empirical variance of the estimators is presented as a
percentage of Ȳ 2. When the response depends on the X and Z interaction, none of
the methods perform well, which is reflected by the high RMSE and high empirical
bias. These results suggest that the weighted estimators may outperform other
methods in such situations, however further investigations are needed to confirm
this. Also, when the data is MCAR, all methods perform similarly. However, the
model-based estimators are more efficient in all the other settings as indicated by
their root mean square errors. It is interesting to note that as long as the response
mechanism does not depend on the X and Z interaction, the model-based methods
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removes all the bias, and when the survey outcome variable Y depends only on Z,
the PS estimator yields the most efficient estimators. Moreover, the PS weighted
estimators yield consistent estimates when Y depends only on Z, but interestingly
this pattern does not hold for NR weighted estimators when Y only depends on X.

5. Discussion

We study estimation of the finite population mean for survey variables subject to
nonresponse when PS is externally available for the population. We show that when
the response mechanism is governed by a post-stratifier, incorporating such informa-
tion into the likelihood, enables us to fit models to data that are MNAR and obtain
maximum likelihood estimates without the need to model the MD mechanism. We
further extended this framework to incorporate covariate information available on
all sampled units, namely that the response mechanism must only depend addi-
tively on the post-stratifier and covariateand showed empirically, that under such
assumption, model-based estimators of the mean obtained via maximum likelihood
methods outperform classical weighted estimators in terms of bias and square error.

In theory, the method proposed in Section 3 can be employed to estimate the
bivariate distribution of Z and X for nonrespondents. The thrust lies in the fact
that under Eq. (3), the joint association between X and Z is preserved between
the respondents and nonrespondents. Moreover, the proposed methodology can
be extended to account for vector-valued covariates and several post-strata. We
believe a sufficient condition for this to hold would be that the response indicator
as well as the survey outcome variable are only additively related to the covariates
and post-strata. In this study we ignored the complexity of the sampling design
by assuming a simple random sample. In future work, we plan to incorporate such
design features into our analysis. Finally, the PMM approach proposed in this study
can be extended to accommodate item nonresponse, by allowing for different MD
patterns [Little, 1993]

References

J.C. Deville and C.E. Sarndal. Calibration estimators in survey sampling. Journal
of the American Statistical Association, pages 376–382, 1992.

D. Holt and TMF Smith. Post stratification. Journal of the Royal Statistical Society.
Series A (General), pages 33–46, 1979.

P.S. Kott and T. Chang. Using calibration weighting to adjust for nonignorable
unit nonresponse. Journal of the American Statistical Association, 105(491):1265–
1275, 2010.

R.J.A. Little. Pattern-mixture models for multivariate incomplete data. Journal of
the American Statistical Association, pages 125–134, 1993.

HL Oh and F.J. Scheuren. Weighting adjustment for unit nonresponse. Incomplete
data in sample surveys, 2:143–184, 1983.

D.B. Rubin. Inference and missing data. Biometrika, 63(3):581, 1976. ISSN 0006-
3444.

5



T
ab

le
3:

S
im

u
la

ti
on

re
su

lt
s

b
as

ed
on

a
sa

m
p

le
of

si
ze

n
=

10
00

N
R

m
o
d

el
y

re
g

m
o
d

el
R

el
R

M
S

E
(a

s
a

%
o
f

tr
u

e
Ȳ
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