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Abstract

It is known that bootstrapping maximum for estimating the endpoint of a distri-
bution function is inconsistent and subsample bootstrap method is needed. Under an
extreme value condition, some other estimators for the endpoint have been studied in
the literature, which are preferrable to the maximum in regular cases. In this paper,
we show that the full sample bootstrap method is consistent for the endpoint estimator
proposed by Hall (1982).
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1 Introduction

Let X1, . . . , Xn be independent and identically distributed random variables with distribu-
tion function F (x), which lies in the domain of attraction of an extreme value distribution,
i.e., there exist an > 0 and bn ∈ R such that

lim
n→∞

Fn(anx+ bn) = Gγ(x) := exp{−(1 + γx)−1/γ}, (1)

where 1 + γx > 0 and γ ∈ R is called the extreme value index. Denote the right endpoint
of F by θ, i.e., θ = sup{x : F (x) < 1}. Under condition (1), it is known that θ is finite
in case of γ < 0 and some studies on estimating the endpoint θ in case of γ < 0 exist in
the literature; see Woodroofe (1974), Hall (1982), Loh (1984), Smith (1987), Dekker et al.
(1989), Aarssen and de Haan (1994), Athreya and Fukuchi (1997), Hall and Wang (1999),
Li and Peng (2009, 2010) and Peng and Qi (2009).

Assume that

1− F (x) = c(θ − x)−1/γ{1 +O((θ − x)α)} as x ↑ θ, (2)

where α > 0 and c > 0, Hall (1982) proposed the following maximum likelihood estimator

(ĉHall(k), θ̂Hall(k), γ̂Hall(k))

= argmax
n!

(n− k − 1)!
{− c

γ
}k+1{

k+1∏
i=1

(θ −Xn,n−i+1)
−1/γ−1} ×

{1− c(θ −Xn,n−k)
−1/γ}n−k−1,

which is equivalent to that θ̂Hall(k) is the solution of the following equation

1

k + 1

k∑
i=1

θ −Xn,n−k

θ −Xn,n−i+1
{ 1

k + 1

k∑
i=1

log
θ −Xn,n−i+1

θ −Xn,n−k
+ 1} = 1 (3)

and

γ̂Hall(k) =
1

k + 1

k∑
i=1

log
θ̂Hall(k)−Xn,n−i+1

θ̂Hall(k)−Xn,n−k

. (4)

Here Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of X1, · · · , Xn. Moreover, Hall (1982)
derived the asymptotic distribution of (θ̂Hall(k), γ̂Hall(k)) when

√
k(k/n)−γα → 0. Re-

cently, assuming the second order condition (7) below and

k = k(n) → ∞ and
√
kA(n/k) → λ ∈ R as n → ∞,

where A is defined in (7) below, Li and Peng (2010) extended the results in Hall (1982) by
adding the bias terms of the joint asymptotic distribution of (γ̂Hall(k), θ̂Hall(k)).

In this paper, we are interested in constructing a confidence interval for θ. One way
is to employ the normal approximation method based on the asymptotic distribution of
θ̂Hall(k). Another commonly used approach in constructing confidence intervals is the
bootstrap method. However, it is known that full sample bootstrap method is inconsistent
for extremes. For example, Bickel and Freedman (1981) pointed out that the full sample
bootstrapping distribution of the normalized maximum fails to be consistent when F is the
uniform distribution, and Angus (1993) showed the same result when F lies in the domain



of attraction of an extreme value distribution. Instead, subsample bootstrap methods have
been proposed to deal with extremes; see Swanepoel (1986), Deheuvels et al. (1993),
Athreya and Fukuchi (1997). More references can be found in Qi (2008), which reviewed
some applications of bootstrap methods in analyzing extreme values.

In this paper, we show that the full sample bootstrap method indeed works for the
endpoint estimator proposed by Hall (1982). We organize this paper as follows. Section 2
gives the main results. A simulation study is given in Section 3.

2 Main results

Let X∗
n = {X∗

1 , . . . , X
∗
n} be a bootstrap sample from the original sample Xn = {X1, . . . , Xn}

and X∗
n,1 ≤ X∗

n,2 ≤ · · · ≤ X∗
n,n be the corresponding order statistics. Then the bootstrap

endpoint estimator is defined as the solution of the following equation

1

k + 1

k∑
i=1

θ −X∗
n,n−k

θ −X∗
n,n−i+1

{ 1

k + 1

k∑
i=1

log
θ −X∗

n,n−i+1

θ −X∗
n,n−k

+ 1} = 1. (5)

Let us denote this solution as θ̂∗Hall(k). Further we can define the bootstrap estimator for
the index γ as

γ̂∗Hall(k) =
1

k + 1

k∑
i=1

log
θ̂∗Hall(k)−X∗

n,n−i+1

θ̂∗Hall(k)−X∗
n,n−k

. (6)

In order to derive the asymptotic distributions of these estimators, we need the following
second order condition. Let U(t) denote the inverse function of 1/(1−F (t)). Suppose that
there exist functions a(t) > 0 and A(t) → 0 such that

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
=

1

ρ
(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ
) := Hγ,ρ(x) (7)

for some ρ ≤ 0. We refer to de Haan and Stadtmüller (1996) or de Haan and Ferreira (2006)
for more details on the second order condition.

The following theorem shows that the bootstrap endpoint estimator is consistent.

Theorem 2.1. Suppose (7) holds for some γ ∈ (−1/2, 0) and ρ < 0. Further assume that

k = k(n) → ∞ and k1/2A(n/k) → 0 as n → ∞.

Then
sup
x∈R

|P (θ̂∗Hall(k)− θ̂Hall(k) ≤ x|Xn)− P (θ̂Hall(k)− θ ≤ x)| p→ 0 (8)

and

sup
x∈R

|P (
√
k
θ̂∗Hall(k)− θ̂Hall(k)

σ∗(k)
≤ x|Xn)− P (

√
k
θ̂Hall(k)− θ

σ(k)
≤ x)| p→ 0 (9)

as n → ∞, where

σ(k) = Xn,n−k{ 1
k

∑k
i=1 log

Xn,n−i+1

Xn,n−k
}{1− γ̂Hall(k)}{γ̂Hall(k)}−2×

{1 + γ̂Hall(k)}{1 + 2γ̂Hall(k)}1/2



and

σ∗(k) = X∗
n,n−k{

1
k

∑k
i=1 log

X∗
n,n−i+1

X∗
n,n−k

}{1− γ̂∗Hall(k)}{γ̂∗Hall(k)}−2×
{1 + γ̂∗Hall(k)}{1 + 2γ̂∗Hall(k)}1/2.

Remark 2.2. As usual, the theoretical optimal choice of k is the one that minimizes the
coverage error. However, it remains unknown on how to derive the expansion for the cov-
erage probability. By noting that the condition of k1/2A(n/k) → 0 implies that k =
o(n−2ρ/(1−2ρ)), one can use k as n−δρ̂/(1−2ρ̂) for some δ ∈ (0, 2) and estimator ρ̂ for ρ. In
the simulation study, we employ δ = 1.4, 1.5, 1.6, 1.7, 1.8 and use the estimator ρ̂ defined
in (2.2) of Fraga Alves et al. (2003).

3 Simulation study

First we investigate the finite sample behavior of the confidence interval constructed by
bootstrapping the pivotal statistic Tn,k :=

√
k{θ̂Hall(k)− θ}/σ(k) and compare it with the

subsample bootstrap method based on statistic R2,n defined in Section 4 of Athreya and
Fukuchi (1997) in terms of both coverage probability and interval length.

We draw 1000 random samples of size n = 200, 1000, 2000 from the random variable
θ− 1/Z, where Z has the Burr(τ1, τ2) distribution, i.e., P (Z ≤ z) = 1− (1+ zτ1)−τ2 for
z > 0. Note that (7) holds with γ = −1/(τ1τ2), ρ = −1/τ2, a(t) = −γtγ−(γ+ρ)τ−1

1 tγ+ρ

and A(t) = −ρ(γ+ρ)τ−1
1 a−1(t)tγ+ρ for this considered distribution. Particularly, we con-

sider (τ1, τ2) = (40, 1/10), (8, 1/2), and θ = 0. For calculating the subsample bootstrap
intervals based on R2,n, we choose m = n0.3, n0.5, n0.7. We plot the empirical coverage
probabilities for the above two confidence intervals with levels 0.9 and 0.95 against differ-
ent values of k, medians of the interval lengths of these 1000 confidence intervals for each
method.

Next, we calculate the coverage probability for the confidence interval based on Tn,k

by choosing k as k̂1 = n−1.4ρ̂/(1−2ρ̂), k̂2 = n−1.5ρ̂/(1−2ρ̂), k̂3 = n−1.6ρ̂/(1−2ρ̂), k̂4 =
n−1.7ρ̂/(1−2ρ̂), k̂5 = n−1.8ρ̂/(1−2ρ̂), k1 = 50, k2 = 100, k3 = 150, k4 = 200, and k5 = 250,
where ρ̂ is defined in (2.2) of Fraga Alves et al. (2003). We consider n = 1000, 2000, and
use the same setup as above. Coverage probabilities with levels 0.9 and 0.95 are reported
in Tables 1 and 2, respectively. From these two tables, we observe that k = k̂4 and k̂5 work
well, and coverage probability for the case of τ1 = 40 is more accurate than that for the
case of τ1 = 8.

In summary, the bootstrap method based on Tn,k for some range of k is comparable to
the subsample bootstrap method based R2,n in terms of coverage probability, but its median
of interval lengths is smaller. Moreover, the proposed adaptive choice of k works well.



Table 1: Empirical coverage probabilities are reported for the confidence intervals with
level 0.9 based on bootstrapping pivotal statistic with estimated k and fixed k.
(n, τ1, τ2) (1000, 40, 1/10) (1000, 8, 1/2) (2000, 40, 1/10) (2000, 8, 1/2)
k = k̂1 0.880 0.749 0.916 0.790
k = k̂2 0.898 0.818 0.922 0.838
k = k̂3 0.922 0.877 0.920 0.883
k = k̂4 0.919 0.911 0.897 0.906
k = k̂5 0.913 0.925 0.895 0.895
k = k1 0.874 0.872 0.865 0.864
k = k2 0.956 0.955 0.945 0.945
k = k3 0.943 0.942 0.932 0.933
k = k4 0.913 0.920 0.896 0.896
k = k5 0.892 0.892 0.896 0.896

Table 2: Empirical coverage probabilities are reported for the confidence intervals with
level 0.95 based on bootstrapping pivotal statistic with estimated k and fixed k.
(n, τ1, τ2) (1000, 40, 1/10) (1000, 8, 1/2) (2000, 40, 1/10) (2000, 8, 1/2)
k = k̂1 0.887 0.761 0.937 0.799
k = k̂2 0.909 0.825 0.948 0.843
k = k̂3 0.942 0.883 0.952 0.896
k = k̂4 0.946 0.921 0.953 0.930
k = k̂5 0.946 0.941 0.945 0.932
k = k1 0.879 0.879 0.868 0.868
k = k2 0.967 0.968 0.963 0.963
k = k3 0.972 0.974 0.964 0.964
k = k4 0.962 0.969 0.956 0.957
k = k5 0.954 0.967 0.947 0.949
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