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Abstract: In this note we deal with the estimation, under a semi-parametric framework,
of a negative extreme value index, the primary parameter in statistics of extremes. We
consider a recent class of generalized negative moment estimators of a negative extreme
value index. Apart from the usual integer parameter k, related to the number of top order
statistics involved in the estimation, the estimator depend on an extra real parameter θ,
which makes it highly flexible and possibly second-order unbiased for a large variety of
models. We are interested on the study of the bootstrap method in Gomes et al. (2013)
for the adaptive choice of the parameters.

Key Words: Bootstrap methods, semi-parametric estimation, statistics of extremes.

1 Introduction

One of the main results in extreme value theory is the possible limiting laws of maximum
values, Xn:n := max(X1, X2, . . . , Xn), of either independent, identically distributed
random variables (r.v.’s) or possibly weakly dependent and stationary from a model F .
We know that if the maximum Xn:n, linearly normalized, converges to a non-degenerate
r.v., then there exist real constants {an}n≥1 (an > 0) and {bn}n≥1, the so-called attrac-
tion coefficients of F , such that

lim
n→∞

P
(
Xn:n − bn

an
≤ x

)
= EVγ(x),

for some γ ∈ R, with EVγ(x) given by

EVγ(x) :=

{
exp

(
−(1 + γx)−1/γ

)
, 1 + γx > 0 if γ ̸= 0

exp(− exp(−x)), x ∈ R if γ = 0.
(1)

We then say that F is in the domain of attraction (for maxima) of EVγ and we use
the notation F ∈ DM(EVγ). The parameter γ is the extreme value index (EVI) and
measures the heaviness of the right tail function F := 1 − F . The heavier the tail, the
larger the EVI is. The EVI is one of the basis of other parameters of extreme and large
events, like a high quantile of probability 1 − p, with p small, the right endpoint of the
model F underlying the data, xF := sup{x : F (x) < 1}, whenever finite, and the
return period of a high level, among others.

We will work with the k + 1 top o.s.’s associated to the n available observations,
assuming only that, for a certain γ < 0, the model F underlying the data is in DM(Gγ).
Most of the classical semi-parametric estimators of any parameter of extreme events have
a strong bias for moderate up to large values of k, including the optimal k, in the sense of
minimal mean squared error (MSE). Accommodation of bias of classical estimators of
parameters of extreme events has been deeply considered in the recent literature. For the



negative EVI-estimation (γ < 0), we refer the recent negative moment estimator (Caeiro
and Gomes, 2010),

γ̂
NM(θ)
k,n :=

1

2

1−

 M
(2)
k,n

(M
(1)
k,n)

2
− 1

−1+ θM
(1)
k,n, θ ∈ R. (2)

with

M
(j)
k,n :=

1

k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n}j , j ≥ 1, Xn−k:n > 0,

and Xi:n denotes the i-th ascending order statistic.
Apart from the usual integer parameter k, related to the number of top order statistics

involved in the estimation, the estimator depend on an extra real parameter θ, which
makes it flexible and possibly second-order unbiased for a large variety of models in
DM(EVγ)γ<0. Indeed, for a negative EVI, adequate conditions on k and θ (see Caeiro
and Gomes 2010, for details), and with N (µ, σ2) denoting a normal r.v. with mean value
µ and variance σ2, we get a null bias, even for moderate values of k, i.e.,

√
k(γ̂

NM(θ)
k,n − γ)

d−→
n→∞

N
(
0, σ2

NM
=

(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)

)
.

In this paper, we are interested on the adaptive choice of the tuning parameters k and
θ. We will study, computationally, the bootstrap method in Gomes et al. (2013) for the
adaptive choice of such parameters.

2 Adaptive selection of the tuning parameters

The adaptive selection of θ and k was already adressed in Gomes et al. (2013). We shall
next present the algorithm which is based on the auxiliary statistic

Tk,n(θ) := γ
NM(θ)
[k/2],n − γ

NM(θ)
k,n =

(
γ̂
NM(0)
[k/2],n − γ̂

NM(0)
k,n

)
+ θ

(
M

(1)
[k/2],n −M

(1)
k,n

)
=: rk + θsk, k = 2, . . . , n− 1,

(3)

where [x] is the integer part of x.

2.1 Adaptive selection of the tuning parameter θ

The stability of Tk,n(θ) around zero for moderate values of k, say k ∈ [k1, k2], with
k1 := [n0.25] + 1 and k2 := [n0.95], enable us to choose

θ̂ ≡ θ̂(k1, k2) := argmin
θ

k2∑
k=k1

(rk + θsk)
2 = −

k2∑
k=k1

rksk/

k2∑
k=k1

s2k, (4)

where rk and sk have been defined in (3).

2.2 Adaptive selection of k

The choice of k for the EVI-estimation is next done on the basis of the bootstrap method-
ology, in a way similar to the one in Danielson et al. (2001), Draisma et al. (1999),
Gomes and Oliveira (2001) and more recently in Gomes et al. (2012), and it is written
algorithmically in the following steps:



1. Compute θ̂ defined in (4).

2. Next, consider sub-sample sizes n1 = o(n) and n2 = [n2
1/n] + 1.

3. For l from 1 until B (for example B = 250), generate independently B bootstrap
samples (x∗1, . . . , x

∗
n2
) and (x∗1, . . . , x

∗
n2
, x∗n2+1, . . . , x

∗
n1
), of sizes n2 and n1, re-

spectively, from the empirical d.f., F ∗
n(x) =

1
n

∑n
i=1 I{Xi≤x}, associated with the

observed sample (x1, . . . , xn).

4. Denoting T ∗
k,n(θ̂) the bootstrap counterpart of Tk,n(θ̂), with Tk,n(θ) defined in (3),

obtain (t∗k,n1,l
, 2 < k < n1 − 1), (t∗k,n2,l

, 2 < k < n2 − 1), 1 ≤ l ≤ B, the
observed values of the statistics T ∗

k,ni
, i = 1, 2. For k = 2, . . . , ni − 1, compute

MSE∗(ni, k) =
1

B

B∑
l=1

(
t∗k,ni,l

)2
, i = 1, 2.

and obtain
k̂∗0|T (ni) := argmin

2<k<ni−1
MSE∗(ni, k), i = 1, 2. (5)

5. For the estimation of the second-order parameter ρ (see [2], for details), consider
the bootstrap estimator given by

ρ̂∗ := ln k̂∗0|T (n1)/
(
2 ln(k̂∗0|T (n1)/n1)

)
. (6)

6. Compute the threshold estimate

k̂∗0 ≡ k̂∗0(n;n1) :=
[
(1− 2ρ̂

∗
)2/(1−2ρ̂∗)

(
k̂∗0|T (n1)

)2
/k̂∗0|T (n

2
1/n)

]
+ 1, (7)

with k̂∗0|T (ni) and ρ̂∗ given in (5) and (6), respectively (see equation (29) and

Section 4. of [6] for the theoretical details). If k̂∗0 > n − 1 then go back to STEP
3.

7. Obtain γ̂∗ ≡ γ̂∗(n;n1) := γ̂
NM(θ̂)

k̂0(n;n1),n
, with γ̂

NM(θ)
k,n , θ̂ and k̂0(n;n1) given in (2),

(4) and (7), respectively.

3 Study of the Adaptive Algorithm

3.1 Aplication to a simulated dataset

We shall next consider a simulated sample of size n = 6000 from the EVγ ≡ EV (−γ)
model, in eq. (1), with γ = −0.5. Due to the nature of the estimators, we can only use
the 3801 positive values of the sample. Figure 1 (left) illustrates, for θ = 0, 1, 1.5 and
2, the behaviour of γ̂NM(θ)

k,n as function of k. Notice that the value θ has a big influence

on the sample path of γ̂NM(θ)
k,n . The application of the adaptive choice of θ, in (4), with

k1 = [n0.25] + 1 = 8 and k2 = [n0.95] = 2517, led us to θ̂ = 1.55. In Figure 1 (right),
we picture the values of θ̂(k1, k2), as function of k2, with k1 ≤ k2 ≤ n− 1. Notice the
resistance of the method to the choice of k2.

The use of the Algorithm, in Sect. 2.2, with n1 = [38010.9] = 1667 and B = 250
led us to k̂∗0 = 2376 and to the adaptive EVI-estimate γ̂∗ = −0.5129, which is very
close to the target value γ = −0.5.
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Figure 1: Estimates of the EVI (left) provided by the estimator under consideration, for the
simulated EV(−0.5) sample and estimates θ̂(k1; k2) (left), as function of k2, k1 ≤ k2 ≤ n−1.

3.2 Sensitivity of the Algorithm to the Choice of B

Working with the previous sample, we shall now study the sensitivity of the Algorithm in
Sect. 2.2 to the choice of the number of bootstrap samples B. A study to the sensitivity
to the choice of n1 can be found in Gomes et al. (2013). As an illustration, we aplied the
algorithm 100 times to the same EV(−0.5) simulated data set with n1 = [38010.95] =
2517, B = 250, 1000 and 5000. Figure 2 presents, in a box and whisker plot, the results
of the bootstrap estimates of the optimal sample fractions, k̂∗0/n, (left) and of the EVI
(right).
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Figure 2: Bootstrap estimates of the optimal sample fractions (left) and of the EVI (right), for
the simulated EV(−0.5) sample.

We can draw the following conclusions:

• Regarding the optimal sample fractions, and for an underlying EV model, with
γ = −0.5, the variability decreases as we increase the value of B. Also, with
B = 250 we can get bootstrap estimates of the optimal sample fraction very close
to 1, which is a region where the asymptotic bias should be larger.

• Regarding the EVI bootstrap estimates, we have a clear improvement in the results
only when we go from B = 250 to B = 1000. Also, the bootstrap EVI-estimates
with B = 5000 have a much larger interquartile range than in the other two cases
(B = 250 and B = 1000).

• To improve the precision of the EVI estimates it is advisable to apply the Algo-
rithm m times and choose the estimate γ̂∗ that corresponds to the median of the



m bootstrap EVI estimates.

3.3 A small-scale Monte Carlo simulation study of the Algorithm

Here we are interested in the distributional properties of the Algorithm in Sect. 2.2 for
finite sample sizes. The study is based on a multi-sample Monte Carlo simulation with
400 runs for the following underlying parents:

• the EV model in (1) with γ = −0.5 and samples of size n = 2500, 6000 and
15000.

• the generalized Pareto (GP) distribution with d.f. GPγ(x) = 1 + lnEVγ(x),
1 + γx > 0, x > 0. We have choosed γ = −0.5 and samples of size n = 2000,
5000 and 10000.

For each sample, we have applied the Algorithm m = 50 times with B = 250 and
n1 = [n0.9]. Then we choosed the estimate γ̂∗ that corresponds to the median of the
m = 50 bootstrap EVI estimates. We have simulated the mean value and the mean
squared error of the EVI bootstrap estimator. We present, in Figs. 3 and 4, a box and
whisker plot with the estimates θ̂ (left) and γ̂∗ (right) of the 400 samples from the EV
and GP model, respectively. In Table 1, we present the simulated mean values and root
mean squared error of the EVI estimator, computed through the Algorithm in Sect. 2.2.
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Figure 3: Simulated values of θ̂ in (4) (left) and Bootstrap estimates of the EVI (right), for the
400 samples from the EV model with γ = −0.5.
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Figure 4: Simulated values of θ̂ in (4) (left) and Bootstrap estimates of the EVI (right), for the
400 samples from the GP model with γ = −0.5.



Table 1: Simulated mean values / root mean squared errors.
n =2500 n =6000 n =15000

EV−0.5 −0.4476 / 0.1094 −0.4590 / 0.0788 −0.4696 / 0.0572
n =2000 n =5000 n =10000

GP−0.5 −0.4840 / 0.1012 −0.4873 / 0.0646 −0.4929 / 0.0475

Some conclusions:

• As expected, the precision of the Algorithm improves as the sample size increases.

• The volatility of the bootstrap estimates is very high when we have samples with
a few thousand observations.

• For the EV−0.5 parents, we tend to overestimate γ. This could be related to the
estimation of the tuning parameter θ or with the choice of the value n1 in the
Algorithm.
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