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Abstract

Identifying homogeneous subgroups of variables can be challenging in high dimensional
data analysis with highly correlated predictors. The generalized fused lasso has been
proposed to simultaneously select correlated variables and identify them as predictive
clusters. In this article, we study several properties of generalized fused lasso. First,
we present a geometric interpretation of the generalized fused lasso along with a dis-
cussion of its persistency. Second, we analytically show its grouping property. Third,
we introduce a modified version of the generalized fused lasso and perform compre-
hensive simulation studies to compare our version of the generalized fused lasso with
other existing methods, showing that the generalized fused lasso outperforms other
variable selection methods in terms of prediction error and parsimony. We describe
two applications of our method in soil science and near infrared spectroscopy studies.
These examples having vastly different data types demonstrate the flexibility of the
methodology particularly for high-dimensional data.
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1 Introduction
Suppose that we observe (x1, y1), . . . , (xn, yn) where xi = (xi1, . . . , xip)

t is a p-dimensional
predictor and yi is the response variable. We consider a standard linear model for each of n
observations

yi =

p∑
j=1

βjxij + εi, for i = 1, . . . , n,

with E(εi) = 0 and Var(εi) = σ2. We also assume the predictors are standardized and the
response variable is centered,

n∑
i=1

yi = 0,
n∑
i=1

xij = 0 and
n∑
i=1

x2ij = 1 for j = 1, . . . , p.

The `1 regularization methods are commonly used to analyze high dimensional data
in recent years. We can obtain sparse estimates by using `1 regularization methods. In
this paper, we consider the fused lasso regression with the generalized fusion penalty. Let
y = (y1, y2, . . . , yn) ∈ Rn and xj = (x1j, . . . , xnj) ∈ Rn. The fused lasso regression (FLR)
with the generalized fusion penalty minimizes

f(β) =
1

2

∥∥y −− p∑
j=1

βjxj
∥∥2
2
+ λ1

p∑
j=1

|βj|+ λ2
∑

(k,l)∈E

|βk − βl|, (1)

where λ1 and λ2 are non-negative tunning parameters, E is the index set of adjacent pairs
of variables specified in model. We introduce a variant of the generalized fused lasso that
effectively selects positively correlated variables in high dimension with an exact grouping
property which we will explain in Section 2. We call this procedure a Hexagonal Operator for
Regression with Shrinkage and Equality Selection, or HORSES for short. We study several
interesting properties of the generalized fused lasso. First, HORSES representation provides
a better geometrical view of the generalized fused lasso and a better understanding to its
persistency. Second, we analytically show that HORSES (equivalently, generalized fused
lasso) is a variable selection method that is specifically tailored to the situation in which
there are strong positive correlations between predictors. HORSES finds a homogeneous
subgroup structure within the high dimensional predictor space. In addition, we implement
comprehensive simulation studies to compare our version of the generalized fused lasso with
other existing methods and show that the generalized fused lasso outperforms other variable
selection methods in terms of prediction error and parsimony.

The remainder of the paper is organized as follows. In Section 2, the HORSES represen-
tation of the generalized fused lasso is introduced. In Section 3, we briefly review the recent
advances in algorithms for solving the generalized fused lasso and introduce our algorithm
for HORSES. In addition, we provide procedures to select tuning parameters. Simulation
studies to show the performances of variable selection and prediction are presented in Section
4. Two data analyses using HORSES are presented in Section 5.

2



(a) (b)

Figure 1: Graphical representation in the (β1, β2) plane. HORSES solutions are the first
time the contours of the sum of squares function hit the hexagonal constraint region. (a)
Contours centered at OLS estimate with a negative correlation. Solution occurs at β̂1 = 0; (b)
Contours centered at OLS estimate with a positive correlation. Solution occurs at β̂1 = β̂2.

2 Model
In this section we describe our variant of the generalized fused lasso. Following the formu-
lation of the elastic net, our penalty term is a linear combination of an L1 penalty for the
coefficients and another L1 penalty for pairwise differences of coefficients.

The novelty of the generalized fused lasso is that it encourages grouping of positively
correlated predictors with a sparsity solution. While the elastic net and OSCAR have a
similar feature, these methods can put negatively correlated predictors into the same group.

HORSES yields estimates using

β̂ = argmin
β
‖y −

p∑
j=1

βjxj‖2 subject to

α

p∑
j=1

|βj|+ (1− α)
∑
j<k

|βj − βk| ≤ t,

where d−1 ≤ α ≤ 1 and d is a thresholding parameter. Our penalty term is mathematically
equivalent to the classo by She (2010) except for the thresholding parameter d. However,
our specification of the penalty terms using a linear combination provides a geometric in-
terpretation of the constraint region which can not be presented with the form of the classo
penalty term.

With the HORSES formulation, instead of an octagon of OSCAR by Bondell and Re-
ich (2008), constraint regions of the generalized fused lasso are represented by a hexagon
(Figure 1(a) and 1(b)), which focuses on selection of groups of predictors that are positively
correlated. This explains why the generalized fused lasso works better when there are strong
positive correlations among the predictors.

What distinguishes HORSES from other generalized fused lasso is the thresholding pa-
rameter d. With d, one can prevent the estimates from being a solution only via the second
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penalty function, so the HORSES method always achieves sparsity. We recommend d =
√
p,

where p is the number of predictors. This ensures that the constraint parameter region lies
between that of the L1 norm and of the elastic net method, i.e. the set of possible estimates
for the HORSES procedure is a subset of that of the elastic net. As a result, we can show
that HORSES is persistent (Greenshtein and Ritov, 2004) when the elastic net is persistent.
If we choose d = p, the HORSES parameter region lies within that of the OSCAR method,
but requires a much stronger condition for persistence. We will show details in the talk.

As the correlation between two predictors increases, the predictors are more likely to be
grouped together. The elastic net also has a grouping property, but does not assign identical
coefficients to predictors within groups. The following theorem shows that HORSES has the
exact grouping property. Our proof follows closely the proof of Theorem 1 in Bondell and
Reich (2008).

Theorem 1. Let λ1 = λα and λ2 = λ(1− α) be the two tuning parameters in the HORSES
criterion. Given data

(
y,X

)
with centered response y and standardized predictors X =

(x1, . . . , xp)
t, let β̂

(
λ1, λ2) be the HORSES estimate using the tuning parameters

(
λ1, λ2

)
.

Let ρij = xTi xj be the sample correlation between covariates xi and xj.
For a given pair of predictors xi and xj, suppose that both β̂i(λ1, λ2) and β̂j(λ1, λ2) are

distinct from the other β̂k. Then there exists λ0 ≥ 0 such that if λ > λ0 then

β̂i
(
λ1, λ2

)
= β̂j

(
λ1, λ2

)
, for all α ∈ [d−1, 1].

Furthermore, it must be that
λ0 ≤ 2‖y‖

√
2(1− ρij).

3 Computation
Developing an efficient algorithm to implement generalized fused lasso procedures is critical
for its application to high dimensional data. Recent advances of such algorithms for the
generalized fused lasso are twofold: the pathwise algorithm and the optimization procedure
for a given set of tuning parameters. The pathwise algorithm for the generalized fused lasso
was first discussed by Friedman et al. (2007). They consider the pathwise coordinate de-
scent algorithm, which sequentially solves a series of the coordinate descent (CD) algorithm.
However, monotonicity of the solution path doesn’t hold for general design matrix. Further-
more, the CD algorithm for non-separable penalty term may not converge. Hence a modified
CD algorithm is used in their procedure. Tibshirani and Taylor (2011) propose a pathwise
algorithm for generalized fused lasso but this still has difficulty for singular design matrix
and high-dimensional data. Recently, another set of algorithms based on the optimization
technique called the first order method, is introduced. For example, Ye and Xie (2011) intro-
duce an algorithm based on split-Bregman iteration, which iteratively solves an augmented
Lagrangian function having additional least square penalties for the violation of linear con-
straints. Lin et al. (2011) propose the alternating linearization algorithm which solves two
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linearized sub-problems derived from the original problem. Liu et al. (2010) rewrite the gen-
eralized fused lasso as the fused lasso signal approximator (FLSA) with an identity design
matrix and further reformulate the FLSA as a problem of finding an appropriate subgradient
of the fused penalty at the minimizer.

To implement HORSES, we use the modified CD algorithm by Friedman et al. (2007)
but do not apply the pathwise step since the monotonicity of the solution path does not
hold for a general design matrix. Instead, we estimate tuning parameters by minimizing the
prediction error with cross-validation. The code is implemented in C and the R statistical
package. Example code is available from the second author upon request.

4 Simulations
We numerically compare the performance of HORSES and several other penalized methods:
ridge regression, LASSO, elastic net, and OSCAR. The first five scenarios are very similar
to those in Zou and Hastie (2005) and Bondell and Reich (2008). We also consider one
more scenario for p > n where we choose p = 100 because this is the maximum number of
predictors that can be handled by the quadratic programming used in OSCAR. The details
of results will be given in the talk.

5 Data Analysis
Two data sets are analyzed. The first data set is the cookie dough dataset from Osborne
et al. (1984), which was also analyzed by Brown et al. (2001) and Hans (2011). Brown et al.
(2001) consider four components as response variables: percentage of fat, sucrose, flour and
water associated with each dough piece. Following Hans (2011), we attempt to predict only
the flour content of cookies with the 300 NIR reflectance measurements at equally spaced
wavelengths between 1200 and 2400 nm as predictors (out of the 700 in the full data set). Also
as in Hans (2011) we remove the 23rd and 61st observations as outliers. Then we split the
dataset randomly into a training set with 39 observations and a test set with 31 observations.
The correlations between NIR reflectance measurements show strong correlations between
any pair of predictors in the range of 1200-2200 and 2200-2400. The second data example
is the Appalachian Mountains Soil Data from Bondell and Reich (2008), which has 15 soil
characteristics computed from measurements made at twenty 500-m2 plots located in the
Appalachian Mountains of North Carolina. The data were collected as part of a study on
the relationship between rich-cove forest diversity and soil characteristics. Forest diversity is
measured as the number of different plant species found within each plot. The values in the
soil data set are averages of five equally spaced measurements taken within each plot and
are standardized before the data analysis. These soil characteristics serve as predictors with
forest diversity as the response. We apply Elastic Net, OSCAR, and HORSES to analyzing
the data and compare the results. Details will be given at the talk.
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