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Abstract

Independent likelihoods are integrated by multiplication. We argue
that confidence distributions should also be integrated by their related
likelihoods (confidence likelihoods), and that confidence intervals should
be integrated by first estimating a related approximate confidence distri-
bution, and then integrate their confidence likelihoods.

1 Introduction

With confidence distribution we mean a nested family of confidence re-
gions Ro(X). « € [0, 1] is the confidence level and 6 € © is the parameter
in the model for the data X, assumed continuously distributed. The
confidence distribution might be cast in terms of the confidence curve
cc(f; X) : © — [0,1] such that Ro(X) = {0 : cc(8; X) < a}. Confidence
curves have the properties

e mingcc(0; ) = 0 for all outcome of the data =

o cc(fo; X) ~ UJ0,1], i.e. the uniform distribution on the unit interval,
when 6 is the true value of the parameter.

By the first property, it is assumed that there are non-empty confidence
regions at all levels of confidence. The second property makes the level
sets of the confidence curves confidence regions. Indeed, Py,(Ra(X) >
60) = Pyy(cc(00; X) < a) = a.

When the confidence curve is flat at zero, every confidence set con-
tains the whole parameter space. The confidence curve cc(f) = 0 is con-
sequently non-informative.

When © = R and the confidence regions are left-open intervals <
—00, 7o (X)], the confidence curve is the cumulative distribution function
H(0; X) with confidence a-quantiles 7o(X) = H ™ '(a;X)). When the
confidence regions are equi-tailed confidence intervals < r4/2,71_a/2 >,
suppressing the dependence on the data X, the confidence curve is cc(6) =
|1 — 2H(0)|. The confidence regions could also be ellipsoids, say for a
mean vector 6 of dimension p, Ry = {0 : (0 — )'S71(0 — 6) < T;'(a)
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where § ~ N(0,%) and T, is the cdf of the X5 distribution. In this case
ce(0) = Tp((0 — 6)'S71(0 — §)). Other forms are possible.

As an example of a more unfamiliar confidence distribution take the
simplest form of the Fieller-Cressie problem (Schweder and Hjort, 2013)
of = pi/p2 when X; ~ N(,ui,a?) and independent. The variances are
assumed known. The profile deviance is

(0X2 — X1)?
D) = ———-F+
) 0202 + o2
Since D(0; X) ~ x1, cc(0; X) = T'1(D(0; X)). The observed confidence
curve has a peak of p = Fl(%) at § = —x201/(x103), asymptotes
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at ¢ = T'1(23/03) at +o0, and a minimum of 0 at @ = 6 = x,/zs. The
confidence region R, is thus the entire real line for a > p, two half-open
intervals stretching out to infinity at both ends for ¢ < o < p, and a finite
interval for a < gq.

Neyman (1941) saw the connection between his confidence intervals
and the fiducial distributions of Fisher (1930). He was less interested in
the likelihood, L(0;2) = | H(0;z)| = f(x;0) obtained from the cumu-
lative confidence/fiducial distribution function that Fisher noted in the
case of a one-dimensional statistic X and parameter 6. A likelihood,
or an approximate likelihood, obtained from a confidence distribution is
called a confidence likelihood (Schweder and Hjort, 2013). Let £.(0) be a
confidence log likelihood, and D.(0) = 2(max:(£(t) — £(0)) the confidence
deviance. Approximate confidence deviances might be obtained from con-
fidence curves by the x? quantile transformation

De(0) =T, (ce(6))

Wilks’” theorem (Schweder and Hjort, 2013) provides a rational for this
construction. When X is a large sample from a regular distribution of pa-
rameter (0, 7), where 0 is the p-dimensional parameter of interest and 7 is
a nuisance parameter, the profile deviance DP™°7 evaluated at 6y is asymp-
totically x?2 distributed. Thus cc(d) = T',(DP™°/(6)) is asymptotically a
confidence curve, and D.(0) = I',; ' (cc(9)) is the profile deviance.

Efron (1993) proposed L;i(0) = exp (—3® '(H(6))?), called the im-
plied likelihood, as the natural likelihood obtained from a cumulative dis-
tribution H for the parameter. The implied likelihood is the same as our
confidence likelihood.

With limited data or an irregular model, the x? approximation might
be too inaccurate. It is good practice to investigate the distribution of
the deviance used for constructing the confidence curve by simulation or
otherwise, and use a better probability transform, if available. It is also
wise to investigate to what extent the nuisance parameter 7 is a problem.
By Wilks’ theorem the profile deviance evaluated at 6y has asymptotically
a x? distribution independent of 7 in the regular case. Data are however
always of limited size, and the profile deviance might have to be adjusted
when the x? approximation is too inaccurate, say by methods discussed
in Brazzale and Davison (2008). Bootstrapping and utilizing the normal
transformation model might also be a way forward (Shweder and Hjort,
2013).



Since the profile deviance is exactly x?-distributed in the simple Fieller-
Cressy model for the quotient of two normal means, it is recovered by
I'7'(cc(6)). The same happens in linear normal models when the vari-
ance is known. For large data the profile likelihood is recovered when the
model is smooth, at least approximately.

Here we shall assume that the x? approximation is sufficiently accu-
rate, and that the nuisance parameter is not a serious problem.

2 Integrating confidence distributions

Given k independent confidence distributions for the same parameter 6,
how should they be integrated to a combined confidence distribution for
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As an example, assume the parameter of interest to be the spatial den-
sity of points, e.g. whales, in an area of the ocean. Whales are counted
by line-transect sampling. for each transect leg the spatial density is es-
timated as the ratio of the number of observed whales to the estimated
size of the effectively observed area along the transect leg. For each tran-
sect leg there are thus a Fieller-Cressie confidence curve, assuming for
simplicity normal distribution and independence of both numerators and
denominators. How should these confidence curves be integrated?

Our proposal is to integrate the independent confidence curves by their
confidence likelihoods. The confidence deviance of confidence curve cc; is
7' (cci(#)). They sum to twice the the combined confidence log likeli-
hood. The proposed combined confidence curve is thus

k k
ceine(8) = G{Y_ Ty (ces(0)) —mine(Y Ty (ces(t))}, (1)

where G is the distribution function of the combined pseudo-deviance in
the argument.

In case the the pseudo-deviance is a profile deviance, it should nearly
have a x? distribution by Wilk’s theorem. The distribution of the com-
bined pseudo-deviance must usually be estimated by simulation.

In case of the Fieller-Cressie example of combining & = 10 confidence
curves, with §p = 1 and unit mean and variance in both numerators
and denominators, the combined pseudo-deviance has the distribution of
Xx1/0.58, as found by simulation. For simulated data, the first of the 10
confidence curves is shown in black, and the combined confidence curve is
in read, see Figure 1.

It may happen that some of the individual confidence curves come out
as non-informative. They are then identically zero, and do not contribute
to the combined confidence curve. This good property is not shared with
Bayesian integrative methods. Nor with the method proposed by Singh
et al. (2005) based on adding the normal scores (or some other quantile
transforms) of the individual confidence distributions. The problem here
is that there are no such thing as a non-informative cumulative confidence
distribution function or posterior Bayesian distribution.
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Figure 1: Fieller-Cressie confidence curves. The black curve is for the first of
k = 10 ratios to merge. The read curve is the combined curve (1). The green
curve is obtained from the summed numerators and denominators.

The combined confidence curve is invariant to monotonic transforma-
tions. This property is shared with the method of Singh et al. (2005).
But not with the Bayesian proposal of normalizing the product of the
individual posterior densities.

The individual confidence curves might be in conflict with each other.
It will then make sense to introduce a random component representing
the distribution of 6 across the k cases. Let g(6;1) be the density of
the mixing distribution, parametrized by 1. Instead of adding the con-
fidence log likelihoods, the method should be to add the confidence log
likelihoods of the g-mixed models. The g-mixed confidence likelihood is
Li(0) = J exp(—0.5T' " (cci (0 + t)))g(t; 1h)dt. If the mixing parameter 1)
is unknown, it could be estimated by maximizing the sum of the g-mixed
confidence log likelihoods.

3 Integrating confidence intervals

Scientific reporting is often briefed to a point estimate 1& and a 95% con-
fidence interval (¢1,2) for the parameter . To merge this information
with that from another confidence interval and point estimate, or indeed
other information, a likelihood based on the information would be helpful.

The more information there is about how the confidence interval is
established, the better a confidence likelihood based on the confidence
interval is grounded. We will discus 2 possible models summarizing the
available background information, or perhaps being just assumed models



if no background information is available. The idea is to extrapolate from
the point estimate and the confidence interval to a confidence distribution,
in view of the model. The confidence distribution is then turned into a
likelihood by the quantile y3-transform.

Assume the point estimate to be median unbiased and tail-symmetric,
i.e. that 1/; is the confidence median. With degree of confidence 1 — «, the
confidence limits are respectively the a/2 and 1—a/2 confidence quantiles

A confidence interval is symmetric when P — Y1 = Y2 — 1ﬁ, and is oth-
erwise skewed. Most confidence intervals obtained by statistical software
are symmetric. They are often based on large sample theory giving that
W is approximately normally distributed with standard error s estimated
from the Hessian of the log likelihood function. The related confidence
curve is thus

ce(yh) = [1—2® ((¢ — 1) /s) |,

withe confidence deviance '[! (ce(v))) = ((1/) — zZA))/s)2

Asymmetric confidence intervals might be obtained by a monotonic
transformation h of a normally distributed estimate. The related confi-
dence curve is then cc(¢)) = [1—2® ((h(w) — h(q[}))/s) |, with related confi-
dence likelihood. When 1 is population size or some other positive param-
eter, the log normal model might apply. The confidence deviance is then

D.(y) = ((1og(1/)) - log(ﬁ))/s)Q. Positive parameters might also be power
transformed h(¢; a) = %wa. The power a and the scale s must then be es-

timated by solving the two equations ¢ —¢® = —sz, Y5 —¢® = sz where
z is the upper «/2 quantile in the normal distribution. For the correlation
coefficient Fisher found the h = arcsin function to provide a nearly normal
pivot. When 9 is a probability the logit function h(¢) = log(v)—log(1—1)
might work.

Effective population size for cod The effective population size
N. of a given stable population is the size of a hypothetical stable popula-
tion where each individual has binomially distributed number of reproduc-
ing offsprings. The hypothetical population maintains the same genetic
variability as the actual population over the generations. In a study of
a cod population a point estimate of 198, and a 95% confidence interval
of (106, 1423) was found for N.. They were obtained from genetic data
by a relatively complex method involving jackknifing. A point estimate
of 1847, and a 95% confidence interval of (800, 2893) was also found for
the actual size N, of the population. The latter confidence interval was
based on N, ~ N(Ng,s). The results for N. and N, are stochastically
independent.

From these data a confidence interval is sought for the ratio ¥ =
Ne/Ng. This ratio can be used to estimate the variance in number of
reproductive offsprings, which is hard to estimate by other more direct
methods. The confidence deviance for N, is simply D.(N,) = (%) 2,
since we find s = 534. For N. we chose the linear normal model in
the power transformed parameter. Solving the two equations we find
a = —0.992 and s = .00233. Using a = —1 the confidence Deviance is

N1-108-1)?
DC(Ne):( “0.00233 ) :



Figure 2: Confidence curve for the ratio ) = N,./N, based on confidence inter-
vals for N, and N,

Except for an additive constant, the combined confidence deviance is
D(Na, Ne) = Do(Ng)+ Dc(Ne), leading to the profile confidence deviance
D.(vy)) = B(v) — miny B(v)) where B(¢)) = miny, D(Na,$N,). Since
by definition Ne < Ng, 9 € (0,1]. The resulting confidence curve for v,
I'1(Dc(%)) is shown in Figure 2. The 95% confidence interval is (0.0467,
1]. The confidence curve reaches its right hand maximum cc(1) = 0.94.
Tail-symmetric confidence intervals with non-trivial upper bound are thus
only possible for degree of confidence less than 0.94.
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