
Testing for Lack of Fit in Functional Regression Models

Samuel Maistrea & Valentin Patileaa,b,1

a CREST-Ensai & IRMAR, Campus de Ker Lann, rue Blaise Pascal, BP
37203, 35172 Bruz cedex, France.

b Corresponding author. Email: patilea@ensai.fr

Abstract. We consider regression models with a response variable tak-
ing values in a Hilbert space, of finite or infinite dimension, and hybrid
covariates. This means there are two sets of regressors, one of finite dimen-
sion and a second one functional with values in a Hilbert space. The problem
we address is the test of the effect of the functional covariates. This problem
occurs in many situations: testing the effect of the functional covariate in a
semi-functional partial linear regression with scalar responses, significance
test for functional regressors in nonparametric regression with hybrid co-
variates and scalar or functional responses, testing the effect of a functional
covariate on a scalar or functional outcome. We propose a new test based on
univariate kernel smoothing. The test statistic is asymptotically standard
normal under the null hypothesis provided the smoothing parameter tends
to zero at a suitable rate. The one-sided test is consistent against any fixed
alternative and detects local alternatives a la Pitman approaching the null
hypothesis quickly enough. In particular we show that neither the dimen-
sion of the outcome nor the dimension of the functional covariates influences
the theoretical power of the test against such local alternatives.
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1 Introduction

Let(H1, ⟨·, ·⟩H1) and (H2, ⟨·, ·⟩H2) denote two possibly different Hilbert spaces.
Herein we focus on the following situations: H1 = R, H2 = L2[0, 1] and
H1 = H2 = L2[0, 1].

Consider U ∈ H1, Z ∈ Rq and W ∈ H2 and let (Ui, Zi,Wi), 1 ≤ i ≤ n,
denote a sample of independent copies of (U,Z,W ). The statistical problem
we consider is the test of the hypothesis

E[U | Z,W ] = 0 a.s. (1)
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against a general alternative like P(E[U | Z,W ] = 0) < 1. This problem
occurs in many model check problems.

a) Semiparametric functional partially linear models. Aneiros-Pérez and
Vieu (2006) proposed an extension of the partially linear model to functional
data. Their model writes as

Y =

q∑
j=1

Xjβj +m(W ) + ε

where the response Y and the covariates Xj are real-valued random vari-
ables, W is a random variable taking values in a functional space, typically
L2[0, 1], and the error term satisfies E[ε | X1, · · ·Xq,W ] = 0 a.s. The coef-
ficients βj and the function m(·) have to be estimated. Before estimating
m(·) nonparametrically, one should check the significance of the variable W.
Let Z = (X1, · · · , Xq) and U = Y − E[Y | Z]. Then testing the significance
of W is exactly testing condition (1). In this example, the variable U is not
observed and the sample U1, · · · , Un has to be estimated by the residuals of
the linear fit of Y given X1, · · · , Xq.

b) Variable selection in functional nonparametric regression with func-
tional responses. Regression models for functional responses are now widely
used, see for instance Faraway (1997). Two situations were studied: finite
and infinite dimension covariates; see Ramsay and Silverman (2005), Fer-
raty et al. (2011), Ferraty et al. (2012). Consider the hybrid case with
both finite and infinite dimension covariates. An important question is the
significance of the functional covariates. In a more formal way, let Y ∈ H1

be the regressor and let Z ∈ Rq and W ∈ H2 denote the covariates. Then
the problem is to test

E[Y | Z,W ] = E[Y | Z].

Let U = Y − E[Y | Z]. Then the problem becomes to test condition (1). In
this example also the sample of the variable Ui is not observed and has to
be estimated by the residuals of the nonparametric regression of Y given Z.

c) Testing the effect of a functional variable. Consider the random vari-

ables U ∈ H1, W̃ ∈ H2. Without loss of generality, we suppose that U is
centered. We want to check if E[U | W̃ ] = 0. Patilea et al. (2012b) pro-
posed a test procedure based on finite dimension subspaces of H2. Their
test statistic is somehow related to a Kolmogorov-Smirnov statistic in a fi-
nite dimension space with the dimension growing with the sample size. Here
we propose an alternative route. Let Z = ⟨W̃ , ψ1⟩H2 where ψ1 is an element
of an orthonormal basis of H2. Suppose that Z admits a density with re-
spect to the Lebesgue measure. The basis of H2 could be the one given by
the functional principal components which in general have to be estimated



from the data. In such a case, the sample of Z ′
is has to estimated too. Let

W = W̃ − ⟨W̃ , ψ1⟩H2ψ1. Then, testing E[U | W̃ ] = 0 is nothing but testing
condition (1).

2 Testing the significance of functional covariates.

Let {ϕ1, ϕ2, · · · } be an orthonormal basis of H2. Let βk = ⟨W,ϕk⟩H2 and
Wp =

∑p
k=1 βkϕk. For a function l, let F [l] denote the Fourier Transform

of l. Let K be a multivariate kernel defined on Rq such that F [K] > 0
and ϕ(s) = exp(−∥s∥2), ∀s ∈ Rp. Many kernels satisfy the positive Fourier
Transform condition, for instance the gaussian, triangle, Student and logistic
densities.

Our new procedure is based on the following facts. First, for any positive
function ω(·) and any h > 0 and p positive integer

I(h) = E
[
⟨U1, U2⟩H1ω(Z1)ω(Z2)h

−qK((Z1 − Z2)/h)ϕ(W1,p −W2,p)
]

= E
[
⟨U1, U2⟩H1ω(Z1)ω(Z2)

∫
Rq

e2πit
′(Z1−Z2)F [K](th)dt

×
∫
Rp

e2πis
′(W1,p−W2,p)F [ϕ](s)ds

]
=

∫
Rq

∫
Rp

∥∥∥E [
E[U | Z,W ]ω(Z)e−i{t′Z+s′Wp}

]∥∥∥2
H1

F [K](th)F [ϕ](s)dtds.

Using the conditions F [ϕ],F [K] > 0 (and ω > 0), for any p we have the
equivalence

E(U | Z,Wp ) = 0 a.s. ⇔ I(h) = 0, ∀h > 0.

Second,

E(U | Z,W ) = 0 a.s. ⇔ E(U | Z,Wp ) = 0 a.s. ∀p ∈ {1, 2, · · · };

see Patilea et al. (2012a,b).
Then, the idea of the new approach is to build a test statistic using an

approximation of I(h). A convenient choice of the function ω(·) will allow to
simplify this task. In the examples a) and c) we could simply take ω(·) ≡ 1.
In example b) we take ω(·) equal to the density of Z. Moreover, in example c)
we can smooth in one dimension and hence avoid the curse of dimensionality.

To estimate I(h), we use the U−statistic

In(h) =
1

n(n− 1)hq

∑
1≤i ̸=j≤n

⟨
Ûiω(Zi), ̂Ujω(Zj)

⟩
H1

Kij(h) ϕij ,



where

Kij(h) = K((Zi − Zj)/h), ϕij = exp(−∥Wi −Wj∥2H2
).

In example b) we take

Ûiω(Zi) =
1

n(n− 1)

∑
k ̸=i

(Yi − Yk)
1

gq
Lik(g),

where L is another kernel, Lik(g) = L((Zi−Zk)/g) and g is a bandwidth con-
verging to zero at a suitable rate. The variance of In(h) could be estimated
by

v2n(h) =
2

n2(n− 1)2h2q

∑
1≤i̸=j≤n

⟨
Ûiω(Zi), ̂Ujω(Zj)

⟩2

H1

K2
ij(h) ϕ

2
ij .

Then, the test statistic is

Tn =
In(h)

vn(h)
.

Under mild technical conditions we show that the test statistic is asymp-
totically standard normal under the null hypothesis E[U | Z,W ] = 0 a.s. We
also show that it is consistent against fixed alternative and detect Pitman
alternatives

H1n : E(U | Z,W ) = rnδ(Z,W ), n ≥ 1,

with probability tending to 1, provided that r2nnh
q/2 → ∞.
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