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Given the need to control energy financial markets, forecasting wind power generation 

has become an important subject of research. One of the most common and important 

components of wind power forecasting models is wind behavior. Usually, data show 

different behaviors depending on wind direction. This is the case of the data from the 

Gibraltar Strait, which is presented in this work; it shows two clearly different wind 

directions. In order to better fit the wind direction, deterministic (Threshold) and 

stochastic (Markov Switching) models for circular variables with a Von-Mises 

conditional distribution are implemented and tested with this data. Results show better 

agreement between observed and modeled data when considering a stochastic 

mechanism that governs the change between regimes.  The study includes a code 

implemented in the R package MSwM that deals with the proposed models 

(https://cran.r-project.org/web/packages/MSwM/index.html). This improved 

prediction of wind direction enhances the capability of forecasting energy generation. 

Keywords: Circular variables, forecasting, Von-Mises distribution, wind direction, 

wind power  

1. Introduction 

Knowing and forecasting wind direction is very important in a lot of fields that cover 

situations related with meteorology, air pollution, climate, migratory patterns of birds, 

ozone concentrations and wind power, among many other applications. The main 

problem is that it is not easy to predict the wind because of its characteristics. All of 

this has generated the need for obtaining statistical models that allow the analysis and 

accurate prediction of wind components, in particular wind direction, which is very 

hard to obtain and predict. Methodologically, wind direction is considered to be a 

circular variable, and one of the most recognized probability distributions for 

analyzing circular variables is the von Mises distribution, also known as the circular 

normal distribution, originally proposed by von Mises (1918). In fact, classical models 

can be extended to deal with circular variables by using their specific distribution 

instead of the Gaussian assumption for linear variables. Holzman et al. (2006) 

introduced a hidden Markov model for bivariate circular time series, generating the 

new hidden Markov models: von Mises-HMM; wrapped normal-HMM; and wrapped 

Cauchy-HMM, in which von Mises, wrapped normal and wrapped Cauchy are circular 

distributions. Also, these models are applied to wind direction, among other examples. 

Carta et al. (2008) model wind speed and direction by using mixtures of von Mises 

distributions. The use of mixtures gives flexibility to the model and, therefore, 

forecasts have to be more accurate. Artes and Toloi (2009) also apply an AR circular 

model with von Mises random errors in estimating wind direction. Recently, Kato 

(2010) suggests a Markov model for circular data, applying it to estimating wind 

direction. It differs from the AR model proposed by Fisher and Lee (1994), in the 
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sense that the angle error follows a wrapped Cauchy distribution and not a von Mises, 

as in the Fisher and Lee (1994) proposal. Erdem and Shi (2011a) proposed ARIMA 

models for forecasting wind speed and direction together while Erdem and Shi 

(2011b) fit a bivariate statistical model, also for wind speed and direction, with the 

intention of increasing the effectiveness of wind power generation. Their approach is 

based on the combination of several distributions of probability for wind speed and 

direction. Finally, a novel idea is to estimate the circular variable, like direction, via 

Bayesian techniques. Nuñez-Antonio et al. (2011) fit a Bayesian regression model for 

estimating wind direction from other covariates such as humidity and temperature. 

Modlin et al. (2012) estimate spatial wind direction under a Bayesian point of view 

also. All this makes us think that there is room for promising research in this area.  

Data used in this study is provided by the HIRLAM model and we have concentrated 

on 36º 9’N 5º 42’W. This geographical point has been selected because it is very close 

to a wind generation farm. Knowing the behavior of the direction at this point can be 

very useful in forecasting the wind generation on the farm. This point is located in the 

south of Spain, close to the Strait of Gibraltar. The wind direction in this zone is not 

easy to estimate because of the geographical situation of this area:  

 There is a topographic barrier formed by two mountain lines: One along the 

coastline of the Iberian Peninsula and another formed by the foothills of the 

Atlas Mountains in Morocco. These topographic features cause the air to flow 

like a tube in an east-west direction.  

 The temperature differences on the two sides of the strait can produce changes 

in wind direction. The Mediterranean is generally 2-5 degrees warmer than the 

Atlantic, which causes a difference in pressure that produces these changes.  

 Sea breezes are produced by the thermal contrast temperatures because of the 

temperature differences between the sea and the coast.  

This means that the wind direction in the Strait of Gibraltar area depends mainly on 

the surface pressure gradient between the two sides of the strait.  

The period analyzed covers January 1
st
 2009 to December 31

st
 2010; the frequency of 

data is every 3 hours (temporal reference system is UTC); it starts at 00.00 (daily 

analysis) and forecasting is at 3.00, 6.00, 9.00, 12.00, 15.00, 18.00 and 21.00. The 

wind direction is recorded every day, eight times a day, so we have a time series for 

this variable. As the whole data set expands over two years, it will permit detecting 

changes due to meteorological seasons and will also permit analysis of diurnal and 

nocturnal patterns. The meteorological direction of the wind (angle between the unit 

vector and geographical north) is calculated as tangent arc (vx,vy), where  vx  and vy  

are the horizontal and vertical components provided by the HIRLAM model. 

Information about temperature and atmospheric pressure is also available. 

2. Methodology 

In the context of circular data like wind direction, several approaches have been 

developed in order to forecast time series. ARMA-type models can be fitted by 

considering a conditional distribution for circular data like von Mises, wrapped normal 

or Cauchy distributions.  But sometimes the series has a non-linear behavior, like 



when considering a mixture of distributions. In this work, we compare two different 

approaches for dealing with nonlinearity when fitting Circular Autoregressive models. 

The mechanism behind the two techniques is similar: the series changes between 

different alternative models according to some condition. The condition that governs 

the change of regime can be a threshold defined by a deterministic mechanism 

(Logistic Mixture Autoregressive Model, LMARX) or a non-observable Markovian 

Process (Markov Switching Model, MSM). The two models are presented and 

algorithms for fitting the models by using the maximum likelihood criterion have been 

developed.  In the case of the MSM model for circular data, the EM algorithm is 

implemented and applied to fit the model as a part of an R package for dealing with 

MSM for different types of data. 

Let us consider a circular random variable,  , that takes the values      . Fisher and 

Lee (1944) developed a method for transforming circular processes into linear 

processes by means of a link function.  Let g be the link function, a strictly monotonic 

(therefore invertible) function that maps the real support into the open interval (- ,  ).  

So, if Xt is a stationary process and         , then                  would be 

called the linked circular process and will also be stationary. Conversely, for a 

stationary circular process  , the transformation by using the link function   

         is a stationary linear process. Some examples of link function in this 

context are:                  and                    . For this 

approach to be useful, it is convenient for the series to have low dispersion. The von 

Mises distribution was also introduced by Fisher and Lee (1994) as a distribution for 

circular time series with an AR structure in a similar way as the linear AR(p) process. 

The expression of a von Mises density with parameters mu and kappa is given by: 

     
          

       
 

where       is the modified Bessel function of order 0. 

A process ( ) is called a circular autoregressive of order p, CAR(p), with link function 

g if   , given                   is distributed as a VM(   ) for t=1…p and 

VM(    ) for t>p, where: 

          
                

            

Sometimes there are structural changes in the series not necessarily related to the 

presence of outlier data. Usually, some partition of the time series can be found in 

which the behavior in each subset is homogeneous and can be described by a 

stationary process. However, the series as a whole is a mixture of different sub-

models. The definition of this partition can be made in several ways. In this work, we 

consider two possibilities: the LMARX model and MSM for circular data. 

LMARX model 

This model is a kind of regime-switching model where the state is determined by the 

value of some available observations from the series and other exogenous variables. If 

the threshold is applied to the series itself, then the model is called SETAR (Self-

exciting Threshold Autoregressive). If some exogenous variables are used instead, the 



model is the TARSO model (Open-loop Threshold autoregressive), see Tong (1990). 

Another extension is to consider a logistic function with both the series itself and a set 

of exogenous variables as explanatory variables to determine which model of the 

mixture is to be applied. This kind of model is known as LMARX (Logistic Mixture 

Autoregressive), see Wong and Li (2001). The regimes are settled by a certain number 

of thresholds, l0,…,lm that divide the space of the [0,1] interval into m subsets. The 

location of the value of the response variable from a logistic model in one of these 

subsets determines which model governs the dynamic of the series at that moment. 

Specification of the model m-regimes LMARX(p) --for circular data with the state 

defined by the logistic model and one exogenous variable-- is as follows: 

                    
      

                 
                      

  

   

   
        

  

   

 

    
  

    
         

        

  

   

           

  

   

 

    
           
  
             

  

There is a set of parameters          
          

       
          

            for each sub-

model. Another set of coefficients             
  is related to the linear predictor of 

the logistic function determining the active sub-model. There are p2 parameters related 

to previous observations of the circular variable and q2 parameters for the exogenous 

variable. Algorithms for estimating this model in the linear case can be found in Wong 

and Li (2001). In our case, we include only one lag for the wind direction and also for 

the two exogenous variables (temperature and atmospheric pressure) in the linear 

predictor, and a purely autoregressive model for the circular variable in all the sub-

models from the mixture. We have implemented an adaptation of the EM algorithm to 

deal with the likelihood of the circular variable. 

MSA for circular data 

A Markov-Switching Autoregressive model for circular data includes an unobserved 

process that determines the changes in regime. Usually, this process is Markovian of 

the first order, and is parameterized by a transition probability matrix. Each element of 

this matrix represents the probability of change between the correspondent states. For 

each regime there is a current AR(p) model that reflects how the present observations 

are linearly related with past observations of the linked scale. MSA models with an 

underlying Markov process         can be expressed as follows: 

                       
      

                 
                      

  

   

   
        

  

   

 



                              

The process defined by        is an irreducible and homogeneous Markov chain with 

transition probability matrix                  . Again, the model contains a set of 

sub-models that depend on the current regime. The expression of these sub-models is 

the same as the one used in the LMARX model.  The parameters for the MSA model 

include the probability matrix   and the coefficients for the model under each state. 

Estimation of parameters under the maximum likelihood criterion has to take into 

account the existence of the underlying process St and, due to the fact that this is not 

observable, has to build the marginal likelihood for the circular data. The expression 

of this marginal likelihood is the joint density of the data. After integration, the 

unobserved process is: 

             

 

    

                                         

 

    

 

In this case, by using the Markovian property of the St process and the conditional 

distribution of the observations, given the previous ones and the current state, the joint 

density can be re-expressed as follows: 

            

  

 

    

                     

 

   

                                   

 

     

 

    

     

The first p observations are included with an unconditional density, similar to the 

classical AR(p) processes. For the rest of the observations, the conditional distribution 

is von Mises and the probabilities for the transition between states correspond to the 

elements of the transition matrix  . Therefore, the expression for the likelihood can be 

expressed in terms of the set of parameters and a nonlinear optimization algorithm can 

be applied to find their estimates. But the dimension of the parameter space can be 

huge when considering a high number of states and the estimation procedure can 

become unstable.  In these cases, an alternative based on the EM algorithm can be 

used to avoid this problem.  

3. Conclusions 

In the MSA model, the changes between states have a stochastic pattern instead of the 

deterministic criteria defined in the LMARX model. So, the main difference between 

the two approaches is that in the LMARX model the state is determined at time t-1, 

whereas in the MSA model, the state is assigned to time t after obtaining the value for 

St.  

Short-term forecasting with a LMARX model implies the use of a specific sub-model, 

depending on the last observation value. On the other hand, forecasts from an MSA 

model come from a linear combination of predictions from each sub-model. 
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