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Abstract

In this paper, with the notion of independent identically distributed ran-
dom variables under sub-linear expectations initiated by Peng, we derive
three kinds of strong laws of large numbers for capacities. Moreover, these
theorems are natural and fairly neat extensions of the classical Kolmogorov’s
strong law of large numbers to the case where probability measures are no
longer additive. Finally, an important feature of these strong laws of large
numbers is to provide a frequentist perspective on capacities.
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1 Introduction

The classical strong laws of large numbers (strong LLN) as fundamental limit theorems in
probability theory play an important role in the development of probability theory and its ap-
plications. The key in the proofs of these limit theorems is the additivity of the probabilities
and the expectations. However, such additivity assumption is not reasonable in many areas
of applications because many uncertain phenomena can not be well modelled using additive
probabilities or additive expectations. More specifically, motivated by some problems in math-
ematical economics, statistics, quantum mechanics and finance, a number of papers have used
non-additive probabilities (called capacities) and nonlinear expectations (for example Choquet
integral/expectation, g-expectation) to describe and interpret the phenomena (see for example,
Chen and Epstein [1], Feynman [4], Gilboa [5], Huber [16], Peng [8,9], Schmeidler [17], Wakker
[18], Walley and Fine [19], Wasserman and Kadane [20]). Recently, motivated by the risk mea-
sures, super-hedge pricing and modelling uncertainty in finance, Peng [11,12,13,14,15] initiated
the notion of independent and identically distributed (IID) random variables under sub-linear
expectations. Under this framework, he proved the weak law of large numbers and the central
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limit theorems (CLT). However, Peng’s techniques can not be extended to prove the strong laws
of large numbers. In this paper, we develop new approaches to solving this problem. We obtain
three strong laws of large numbers for capacities in this framework. All of them are natural and
fairly neat extensions of the classical Kolmogorov’s strong law of large numbers, but the proofs
here are different from the original proofs of the classical strong law of large numbers.

2 Results

Now we describe the problem in more detail. For a given set P of multiple prior probability
measures on (Ω,F), we define a pair (V, v) of capacities by

V(A) := sup
P∈P

P (A), v(A) := inf
P∈P

P (A), ∀A ∈ F .

The corresponding Choquet integrals/expecations (CV, Cv) are defined by

CV [X] :=
∫ ∞

0
V (X ≥ t)dt +

∫ 0

−∞
[V (X ≥ t)− 1]dt

where V is replaced by v and V respectively.
The pair of so-called maximum-minimum expectations (E, E) are defined by

E[ξ] := sup
P∈P

EP [ξ], E [ξ] := inf
P∈P

EP [ξ].

Here and in the sequel, EP denotes the classical expectation under probability P.
In general, the relation between Choquet integral and maximum -minimum expectations is

as follows: For any random variable X,

E[X] ≤ CV[X], Cv[X] ≤ E [X].

Note that under some very special assumptions on P and V, both inequalities could become
equalities (see for example Gilboa [5], Huber [16], Schmeidler [17]).

Given a sequence {Xi}∞i=1 of IID random variables for capacities, the earlier papers related
to strong laws of large numbers are Dow and Werlang [2] and Walley and Fine [19]. However,
the more general results for strong laws of large numbers for capacities were given by Marinacci
[6,7] and Epstein and Schneider [3]. They show that, on full set, any cluster point of empirical
averages lies between the lower Choquet integral Cv[X1] and the upper Choquet integral CV[X1]
with probability one under capacity v. That is

v

(
ω ∈ Ω : Cv[X1] ≤ lim inf

n→∞
1
n

n∑

i=1

Xi(ω) ≤ lim sup
n→∞

1
n

n∑

i=1

Xi(ω) ≤ CV[X1]

)
= 1.

Marinacci [6,7] obtains his result under the assumptions that V is a totally monotone capacity on
a Polish space Ω, random variables {Xn}n≥1 are bounded or continuous. Epstein and Schneider
[3] also show the same result under the assumptions that V is rectangular and the set P is finite.

Since the gap between the Choquet integrals Cv[X] and CV [X] is bigger than that of the
maximum-minimum expectations E [X] and E[X] for all X, it is of interest to ask whether we



can obtain a more precise result if the Choquet integrals/expctations in the above equality are
replaced by maximum-minimum expectations. That is

v

(
ω ∈ Ω : E [X1] ≤ lim inf

n→∞
1
n

n∑

i=1

Xi(ω) ≤ lim sup
n→∞

1
n

n∑

i=1

Xi(ω) ≤ E[X1]

)
= 1.

The first result in this paper is to show that the above equality is still true in Peng’s framework
even under some weaker assumptions. Furthermore, motivated by this result, we establish two
new laws of large numbers. The first is to show that there exist two cluster points of empirical
averages which reach the minimum expectation E [X1] and the maximum expectation E[X1]
respectively under capacity V. That is

V

(
ω ∈ Ω : lim sup

n→∞
1
n

n∑

i=1

Xi(ω) = E[X1]

)
= 1;

V

(
ω ∈ Ω : lim inf

n→∞
1
n

n∑

i=1

Xi(ω) = E [X1]

)
= 1.

The second is to prove that the cluster set of empirical averages coincides with the interval
between minimum expectation E [X1] and maximum expectation E[X1]. That is, if C({xn}) is
the cluster set of {xn}, then

V

(
ω ∈ Ω : C

({
1
n

n∑

i=1

Xi(ω)

})
⊇ [E [X1], E[X1] ]

)
= 1.

Obviously, if capacity V or v in the above results is a probability measure, all of our main results
are natural and fairly neat extension of the classical Kolmogorov’s strong law of large numbers.
Moreover, an important feature of our strong laws of large numbers is to provide a frequentist
perspective on capacities.

Finally, our results also imply that [E [X1],E[X1]] is the smallest interval of all intervals in
which the limit point of empirical averages lies with probability (capacity v) one.
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