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Abstract

We present a new scheme for modeling the contour of wet material ob-
jects by employing optimal design of periodic smoothing spline surfaces.
The surfaces are constructed using normalized uniform B-splines as the ba-
sis functions, namely as weighted sum of shifted bi-variable B-splines. Then
a central issue is to determine an optimal matrix of the so-called control
points. A concise representation for the optimal surfaces with periodic con-
straint is derived, which enable us to develop numerical computational pro-
cedures in a straightforward manner. The results are applied to the problem
of modeling contour of wet material objects with deforming motion, and the
effectiveness is examined by experimental studies.

Keywords: B-splines, optimal spline surface, motion understanding, mov-
ing deformable objects

1 Introduction

Wet material objects – such as jellyfish, red blood cell and amoeba, etc.
are characterized by various deformation motions. An important issue in
their studies is to analyze and understand the motions of such objects from
the observational data, e.g., from sampled image frames in a movie file.
The contour modeling of deformable objects plays key roles, and has been
studied in various fields – such as image processing and robotics, etc. In such
works, spline functions have been used frequently, e.g. as B-spline snakes
in [1]. However, most of the approaches have focused their attention on the
problem of modeling the contour of objects at some time instant, and have
difficulties in analyzing and understanding a whole motion of the moving
deformable objects.

An approach for contour modeling is to design periodic surfaces by inter-
polating or smoothing a set of given discrete contour data in a 3-dimensional
(3-D) space. In particular, by constructing periodic surfaces in a 3-D space
composed of the 2-dimensional image plane and the time axis, we can model
the contour dynamically. Such a contour may be useful to analyze and un-
derstand a whole motion. This idea is similar to the one for the spline-based
solid modeling such that human organs is modeled from a data set of the
magnetic range imaging (MRI) [2], etc. Moreover it is recognized that the
interpolation often results in oscillating surfaces, and hence is inappropriate
in such cases where the image data may include some noises. On the other
hand, it is well known that the approximation by smoothing splines is stable
numerically and yields feasible approximation results.

In this paper, we present a new scheme for modeling the contour of wet
material objects based on the design method of optimal periodic smoothing
surfaces [3]. The surfaces are constituted by employing normalized uniform
B-splines as the basis functions. We first develop the method for designing
optimal periodic smoothing spline surfaces. Then, the results are applied
to model dynamic contour of jellyfish as an example of wet material ob-
jects. Also, we show that the proposed method is helpful for analyzing and
understanding the motions of wet material objects.



2 Optimal Periodic Smoothing Spline Surface

In this section, we briefly review a method for constructing periodic smooth-
ing spline surfaces [3].

For designing surfaces x(s, t), we employ normalized, uniform B-spline
function Bk(t) of degree k as the basis functions,

x(s, t) =
m1−1∑

i=−k

m2−1∑

j=−k

τi,jBk(α(s− si))Bk(β(t− tj)), (1)

where α, β(> 0) are constants, m1, m2(> 2) are integers, and si’s, tj ’s
are equally spaced knot points with si+1 − si = 1

α , tj+1 − tj = 1
β . Then,

by choosing appropriate weighting coefficient τi,j called ‘control point’, the
function x(s, t) represents a spline surface on the rectangular domain S =
[s0, sm1 ]× [t0, tm2 ] ⊂ R2.

The B-spline Bk(t) is defined by

Bk(t) =





Nk−j,k(t− j) j ≤ t < j + 1 j = 0, · · · , k

0 t < 0, k + 1 ≤ t.
(2)

The basis elements Nj,k(t) (j = 0, 1, · · · , k) are obtained recursively by the
following algorithm [4]. Let N0,0(t) ≡ 1 and, for i = 1, 2, · · · , k, compute




N0,i(t) = 1−t
i N0,i−1(t)

Nj,i(t) = i−j+t
i Nj−1,i−1(t) + 1+j−t

i Nj,i−1(t), j = 1, · · · , i− 1

Ni,i(t) = t
iNi−1,i−1(t).

(3)

Thus, Bk(t) is a piecewise polynomial of degree k with integer knot points
and is k − 1 times continuously differentiable. It is noted that Bk(t) for
k = 0, 1, 2, · · · is normalized in the sense of

∑k
j=0 Nj,k(t) = 1, 0 ≤ t ≤ 1.

Now suppose that a set of data

D = {(ui, vi; di) : (ui, vi) ∈ S, di ∈ R, i = 1, 2, · · · , N} (4)

is given, and let τ ∈ RM1×M2 (Ml = ml + k, l = 1, 2) be the weight matrix

τ = [τi,j ]
i=m1−1,j=m2−1
i,j=−k . (5)

Then, a problem of designing optimal periodic smoothing spline surfaces
is to find a surface x(s, t), or equivalently a matrix τ ∈ RM1×M2 , minimizing
a cost function

J(τ) = λ

∫ sm1

s0

∫ tm2

t0

(∇2x(s, t)
)2

dsdt +
N∑

i=1

wi(x(ui, vi)− di)2, (6)

where ∇2 denotes Laplacian, subject to continuity constraints

∂l

∂tl
x(s, t0) =

∂l

∂tl
x(s, tm2), ∀s ∈ [s0, sm1 ], l = 0, 1, · · · , k − 1. (7)

Here, λ(> 0) is a smoothing parameter, and wi (0 ≤ wi ≤ 1) denotes weights
for approximation errors.

This problem can be solved as follows: Let b1(t) ∈ RM1 and b2(t) ∈ RM2

be

b1(s) = [Bk(α(s− s−k)) Bk(α(s− s−k+1)) · · · Bk(α(s− sm1−1)]T , (8)
b2(t) = [Bk(β(t− t−k)) Bk(β(t− t−k+1)) · · · Bk(β(t− tm2−1))]T . (9)



Then, with a vector τ̂ ∈ RM (M = M1M2) using vec-function [5] as τ̂ =
vec τ , x(s, t) in (1) is expressed as x(s, t) = (b2(t)⊗b1(s))T τ̂ where ⊗ denotes
Kronecker product. Then the cost (6) is expressed in terms of τ̂ as

J(τ̂) = τ̂T Gτ̂ − 2τ̂T g + c, (10)

where
G = λQ + BWBT , g = BWd, c = dT Wd. (11)

Here, Q ∈ RM×M is a Gram matrix defined by

Q = Q
(00)
2 ⊗Q

(22)
1 +Q

(02)
2 ⊗

(
Q

(02)
1

)T

+
(
Q

(02)
2

)T

⊗Q
(02)
1 +Q

(22)
2 ⊗Q

(00)
1 , (12)

where Q
(ij)
l ∈ RMl×Ml (l = 1, 2; i, j = 0, 1, 2) are given by

Q
(ij)
l =

∫

Il

dibl(t)
dti

djbT
l (t)

dtj
dt (13)

with I1 = [s0, sm1 ] and I2 = [t0, tm2 ]. Each matrix Q
(ij)
l (l = 1, 2; i, j =

0, 1, 2) in (12) can be computed a priori (i.e. regardless of the data di) when
the relevant parameters such as m1 and m2 are specified (see e.g. [4]). In
(11), the matrices B ∈ RM×N , W ∈ RN×N and the vector d ∈ RN are
given by

B =
[

b2(v1)⊗ b1(u1) b2(v2)⊗ b1(u2) · · · b2(vN )⊗ b1(uN )
]

W = diag{w1, w2, · · · , wN}
d = [ d1, d2, · · · , dN ]T . (14)

Next we express the constraints (7) in terms of τ̂ . Letting τ c
i ∈ RM1 ,

i = −k,−k +1, · · · , m2−1, be the i-th column vector of the matrix τ in (5),
i.e.

τ = [τ c
−k τ c

−k+1 · · · τ c
m2−1], (15)

it can be shown that the constraints (7) are satisfied if and only if the
following condition holds.

τ c
i = τ c

m2+i, i = −k,−k + 1, · · · ,−1. (16)

This is written as a linear constraint in τ̂ as

P τ̂ = 0, (17)

where P ∈ RkM1×M is the matrix defined by

P = [IkM1×kM1 0kM1×(M−2kM1) − IkM1×kM1 ]. (18)

Minimizing the cost function subject to the constraints (7) is now a
straightforward task. For the cost function in (6), i.e. (10), we form the
following Lagrangian function,

L(τ̂ , µ) = τ̂T Gτ̂ − 2τ̂T g + c + µT P τ̂ (19)

with a Lagrange multiplier µ ∈ RkM1 . Then, by taking derivatives with
respect to τ̂ and µ, we get

[
G PT

P 0kM1×kM1

] [
τ̂
1
2µ

]
=

[
g

0kM1

]
. (20)

Thus, the optimal solution τ̂? is obtained as a solution of this equation.
It can be shown that this equation is consistent and always has a solution.

If the matrix G is positive definite, i.e. G > 0, then the coefficient matrix
in (20) is nonsingular since P is of row full rank, and the solution exists



uniquely. Then, by using the block matrix inversion lemma (see e.g. [5]),
the optimal solution τ̂? is given by

τ̂? =
(
G−1 + G−1PT ∆−1PG−1

)
g (21)

with ∆ = −PG−1PT .
For an optimal choice of smoothing parameter λ in (6), we employ the so-

called generalized cross validation (GCV) method [6] assuming that G > 0
and W = 1

N I. Then, the optimal λ is obtained by minimizing the GCV
function V (λ),

V (λ) =
1
N ‖(I −A(λ)) d‖2
(

1
N tr. (I −A(λ))

)2 . (22)

Here, A(λ) ∈ RN×N denotes the so-called ‘influence matrix’ defined by

[xλ(s1, t1) xλ(s2, t2) · · · xλ(sN , tN )]T = A(λ) [d1 d2 · · · dN ]T , (23)

where xλ(s, t) is the minimizer of the cost (6) with the constraints (7) under
the parameter value λ. It can be shown that A(λ) is computed by

A(λ) =
1
N

BT
(
G−1 + G−1PT ∆−1PG−1

)
B (24)

where G depends on λ.

3 Dynamic Contour Modeling

We apply the design method of periodic splines to the problem of modeling
the dynamic contour of wet material objects. As an example, we consider
to model the jellyfish motion with deformation and translation by using a
small number of image frames sampled from real digital movie file1 with 101
frames. In the sequel, we set parameters k, α, β as k = 3, α = β = 1 and
the rectangular domain S = [s0, sm1 ] × [t0, tm2 ] as S = [0, 10] × [0, 10] (i.e.
m1 = m2 = 10).

The modeling proceeds as follows. Among the 101 frames in the movie,
we use only 11 frames sampled at every 10-th frames as 1st, 11th, ..., and
101th frames. We relate this frame number with time s ∈ [0, 10] by s =
0.1× (j − 1), j = 1, 11, · · · , 101.

Next we show how the data points (ui, vi), i = 1, 2, · · · , N and the data
di for D in (4) are selected. For each sampled frame, we select 10 boundary
points of the target (i.e., jellyfish) as the data points as explained below.
For the j-th frame, we first apply the discrete approximation technique of
“Snakes” [7] and obtain a set of discrete contour data D(j)

c of the target.
Moreover we compute the centroid oj (i.e. center of mass) of target, and
fix an oj − pjqj plane with the origin at oj . Then each boundary point in
D(j)

c is expressed in polar coordinate as (θi, ri), where θi ∈ [0, 2π) is the
angle from the pj axis and ri is the distance from the origin oj . Ten points
(θ(j)

i , r
(j)
i ), i = 1, 2, · · · , 10 are then selected in such a way that their angles

are as uniformly distributed in [0, 2π] as possible, i.e. |θ(j)
i+1−θ

(j)
i | ≈ 0.2π ∀i.

We relate θ
(j)
i with variable t ∈ [0, 10] by t = 180

36π θ
(j)
i . Thus for the j-th

frame, we obtain the following 10 data points (ui, vi) = (0.1×(j−1), 180
36π θ

(j)
i )

and the corresponding data di = r
(j)
i for i = 1, 2, · · · , 10. Since we use 11

frames out of 101 frames and 10 data points in each frame, the number of
data N becomes N = 11× 10 = 110.

We are now in the position to model the dynamic contour of jellyfish with
translation and deformation motions. The translation motion o(s) is con-
structed by designing smoothing curve for a set of data oj , j = 1, 2, · · · , 11,

1Educational Image Collections, Information-technology Promotion Agency (IPA),
Japan. http://www2.edu.ipa.go.jp/gz/
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Figure 1: Constructed translation motion
of jellyfish.
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Figure 2: Optimal periodic smoothing
surface x(s, t).
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Figure 3: Generalized cross validation
function.
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Figure 4: Dynamic contour model of jel-
lyfish.

and Figure 1 shows the motion o(s), s ∈ [0, 10] in the pq-plane (same as the
movie frame plane), where the centroids oj , j = 1, 2, · · · , 11 obtained from
the sampled images are denoted by the corresponding numbers. On the other
hand, as shown in Figure 2, the deformation motion is obtained by designing
the periodic surface x(s, t) for the set of data (ui, vi; di), i = 1, 2, · · · , 110.

In Figure 3, the GCV function V (λ) in (22) is plotted on the interval
[10−6, 102] of λ, where we confirmed that the matrix G in (11) is positive
definite. The optimal value of smoothing parameter λ was estimated as λ? =
1.9953×10−4. Note that this surface x(s, t) is periodic in t in the sense of (7)
and constructed in polar coordinate, the deformation motion of target for
fixed s is reconstructed in the coordinate system o− pq by [p(s, t), q(s, t)] =
[x(s, t) cos θ(t), x(s, t) sin θ(t)] with θ(t) = 36π

180 t for t ∈ [0, 10]. By combining
the above results in 3-D movie frame space o − pqs, we get the dynamic
contour model of the jellyfish as shown in Figure 4. In Figure 5, we plot
four frames, 26th, 46th, 66th and 86th frames, of original movie overlaid
with the corresponding tomography of constructed model, i.e. the plot of
x(s, t) in pq-plane for s = 2.5, 4.5, 6.5 and 8.5. Notice that these frames
are not used for the modeling, but the contour agrees with the real contour
fairly precisely. Also, we confirmed by animation that the contour model for
the entire motion period is in good agreement with the movie.

The above model enables us to analyze the motion from various view-
points. For example, the area and the smoothness from the contour model
may give meaningful information for evaluating the deformation motions of
jellyfish. Specifically, the area S(s) and the smoothness C(s) at s ∈ [s0, sm1 ]
can be obtained as

S(s) =
1
2

∫ tm2

t0

det
[

p(s, t) q(s, t)
d
dtp(s, t) d

dtq(s, t)

]
dt

=
π

tm2

∫ tm2

t0

(x(s, t))2 dt =
π

tm2

τ̂T
(
Q

(00)
2 ⊗Bc(s)

)
τ̂ , (25)



(a) 26th frame (s=2.5) (b) 46th frame (s=4.5)

(c) 66th frame (s=6.5) (d) 86th frame (s=8.5)

Figure 5: Four movie frames (unused as
the data D) and the corresponding con-
tour from the dynamic model.
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Figure 6: Quantitative evaluation for de-
formation motion of jellyfish.

C(s) =
∫ tm2

t0

(
d2

dt2

√
p2(s, t) + q2(s, t)

)2

dt

=
∫ tm2

t0

(
d2

dt2
x(s, t)

)2

dt = τ̂T
(
Q

(22)
2 ⊗Bc(s)

)
τ̂ . (26)

Here, Q
(ii)
2 ∈ RM2×M2 for i = 0, 2 is given by (13), and Bc(s) ∈ RM1×M1

is defined as Bc(s) = b1(s)bT
1 (s). It is noted that the quadratic forms in

(25) and (26) are easy to compute for each s since Q
(00)
2 and Q

(22)
2 are

the pre-computed constant matrices and τ̂ is the constant vector. Figure 6
shows the parametric representation of the computed (C(s), S(s)), where the
points (C(vj), S(vj)), j = 1, 2, · · · , 11 obtained from the sampled images are
denoted by the corresponding numbers. This would be helpful for evaluating
the deformation motion of jellyfish.
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