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Abstract

Mean profiles are widely used as indicators of the electricity consumption habits of customers.
Currently, Électricité De France (EDF), estimates class load profiles by using point-wise mean function.
Unfortunately, it is well known that the mean is highly sensitive to the presence of outliers, such as one
or more consumers with unusually high-levels of consumption. In this paper, we propose an alternative
to the mean profile: the L1-median profile which is more robust. When dealing with large datasets of
functional data (load curves for example), survey sampling approaches are useful for estimating the
median profile and avoid storing all of the data. We propose here estimators of the median trajectory
using several sampling strategies and estimators. A comparison between them is illustrated by means
of a test population. We develop a stratification based on the linearized variable which substantially
improves the accuracy of the estimator compared to simple random sampling without replacement.
We suggest also an improved estimator that takes into account auxiliary information. Some potential
areas for future research are also highlighted.

Key Words: Horvitz-Thompson estimator, k-means algorithm, poststratification, stratified sampling,
substitution estimator, variance estimation.

1 Introduction

In the next few years, the French electricity company (EDF) intends to install over 30 million electricity
smart meters, in every firm and household in France. These meters will be able to send individual
electricity consumption measures on very fine time scales. The new smart electricity meters will provide
accurate and up-to-date electricity consumption data. In view of this new setting, the relevant variables,
such as the consumption curve, may be considered as realizations of functional variables depending on a
continuous time index t that is in the [0, T ] rather than as multivariate vectors. The amount of load data
will be enormous when all or almost all customers have smart meters. Collecting, saving and analyzing
all this information, would be very expensive. For example, if measures are taken every 10 minutes during
one year and if we are interested in estimating the total electricity consumption for residential customers,
the data storage is of about 100 terabytes.

Taking only a sample of meters reduces the amount of data storage and allows getting accurate
estimates of quantities of interest such as the total or the mean consumption curve and even more, the
L1-median. In the presence of consumers with very high levels of electricity consumption, the L1-median
is a more robust indicator of the distribution of data than the mean consumption curve.

∗This paper is based on work done in collaboration with Mohamed Chaouch (EDF R&D, Clamart, France) and published
in the International Statistical Review, 80, 40-59, 2012.
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The paper is structured as follows: Section 2 gives a brief description of the L1-median and the main
results concerning its estimation with survey data. A weighted estimator is suggested for the median and
a variance estimator is also proposed. Section 3 gives a comparison of the estimation of the L1-median
curve using several sampling designs and estimators.

2 Functional Median in a Survey Sampling Framework

Let us consider the finite population U = {1, . . . , N} of size N and a functional variable Y defined for
each element k of the population U : Yk(t), for t ∈ [0, T ], with T <∞. Let < ·, · > and, || · ||, be the inner
product and the norm, respectively, defined on L2[0, T ]. The median curve calculated from Y1, . . . , YN is
defined as (Chaudhuri, 1996 and Gervini, 2008):

mN = arg min
y∈L2[0,T ]

N∑
k=1

||Yk − y||. (1)

For Y1, . . . , YN ∈ Rd, mN defined by the relation (1) arises as a natural generalization of the well-known
characterization of the univariate median (Koenker and Basset, 1978), q = arg minθ

∑N
k=1 |Yk − θ|, and

it was called the spatial median by Brown (1983), the L1-median by Small (1990) and the geometric
median by Chaudhuri (1992). Weber (1909) obtained mN as the solution to a location problem in which
the Y1, . . . , YN are the planar coordinates of N customers, who are served by a company that wants to
find an optimal location for its warehouse.

Supposing that Yk, for all k = 1, . . . , N, are not concentrated on a line, the median exists and is
unique (Kemperman, 1987). It is the solution of the following estimating equation:

N∑
k=1

Yk − y
||Yk − y||

= 0 (2)

provided that mN 6= Yk for all k = 1, . . . , N.
The median defined in this way is a global and central indicator of the distribution of the data. It has

some other desirable properties and the reader is referred to Ilmonen et al. (2012) for a recent review of
them. We plot in Figure 1 the mean curve versus the L1-median for the test population of N = 18902
French companies. The electricity consumption was measured every 30 minutes during one week.
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Figure 1: The spatial median profile is plotted in red and the mean profile in black.



2.1 The design-based estimator for the L1 median

The median defined by (1) or (2) is computed by using iterative algorithms (Vardi and Zhang, 2000).
These algorithms may be time-consuming especially if the size of the population is very large. In this
work, we suggest estimating the median curve mN by taking only a sample s from U according to a
sampling design. Given a sample selection scheme, a probability measure p(·) on the set of all subsets
of U, henceforth denoted P(U), is called a sampling design. A sample s ⊂ P(U) may be seen as the
outcome of a random variable S whose probability distribution is specified by the function p. The subset
of P(U) composed of those s for which p(s) is strictly greater than zero constitutes the set of possible
samples given the specified selection scheme.
For any k ∈ U , the probability that the unit k will be included in a sample is given by πk = P(k ∈ S) =∑

k∈s p(s) where the sum is considered over all samples s containing the individual k. If k 6= l are two
elements of U , the probability that both k and l are included in a sample is given by πkl = P(k, l ∈ S) =∑

k,l∈s p(s), where the sum is considered over all samples s containing both k and l.
The estimator m̂n of the L1-median mN is the solution of the minimization problem:

m̂n = arg min
y∈L2[0,T ]

∑
k∈s

||Yk − y||
πk

. (3)

Supposing now that Yk 6= m̂n for all k ∈ s and that Yk are not concentrated on a line, we see following
the same arguments as in Kemperman (1987) or Chaudhuri (1996), that the solution m̂n exists and is
the unique solution of the design-based estimating equation:∑

k∈s

1
πk

Yk − m̂n

||Yk − m̂n||
= 0. (4)

The median estimator m̂n is also called the substitution estimator of mN and it is defined by a non-linear
implicit function of Horvitz-Thompson estimators. As a consequence, the variance as well as the variance
estimator of m̂n can not be obtained directly using Horvitz-Thomson formulas.

2.2 Asymptotic properties

Under broad assumptions, Chaouch and Goga (2012) give the following first-order expansion of m̂n :

m̂n = mN +
∑
k∈s

uk
πk
−
∑
k∈U

uk + op(n−1/2), (5)

where uk = Γ−1
(

Yk−mN
||Yk−mN ||

)
and Γ is the Jacobian operator of the objective function from (1):

Γ =
∑
k∈U

1
||Yk −mN ||

[
I− (Yk −mN )⊗ (Yk −mN )

||Yk −mN ||2

]
,

with I the identity operator defined by Iy = y and ⊗ the tensor product defined by a⊗ b(y) =< a, y > b.
The quantity uk for k ∈ U is called the linearized variable of mN and it is a kind of functional derivative.
The linearized variable uk for k ∈ U is a curve and unknown.
From equation (5), we obtain that the median estimator m̂n may be approximated by

∑
s
uk
πk

which is
the Horvitz-Thompson estimator of

∑
U uk. This is why estimating efficiently m̂n is equivalent to esti-

mating efficiently the total of uk. The asymptotic variance function of m̂n calculated under the sampling

design is the variance of
∑

k∈s uk/πk, namely varp(m̂n)(t) =
∑
k∈U

∑
k∈U

(πkl − πkπl)
uk(t)
πk

ul(t)
πl

. A vari-

ance estimator is given by v̂arp(m̂n)(t) =
∑
k∈s

∑
k∈s

πkl − πkπl
πkl

ûk(t)
πk

ûl(t)
πl

with ûk = Γ̂−1
(

Yk−bmn

||Yk−bmn||

)
and



Γ̂ =
∑
k∈s

1
πk||Yk −mN ||

[
I− (Yk − m̂n)⊗ (Yk − m̂n)

||Yk − m̂n||2

]
.

In practice, we observe the curves Yk at D discretized points, 0 = t1 ≤ . . . ≤ tD = T , which are
supposed to be the same points for all k ∈ U. The curves may be seen then as multidimensional vectors,
Yk = (Yk(t1), . . . , Yk(tD))′ and ûk = (ûk(t1), . . . , ûk(tD))′ observed for all k ∈ s. To compute ûk for
k ∈ s, one solves the D × n dimensional system

Γ̂(û1, . . . , ûn) =
(

Y1 − m̂n

||Y1 − m̂n||
, . . . ,

Yn − m̂n

||Yn − m̂n||

)
where Γ̂ is a D×D symmetric matrix obtained from the formula given above. Chaouch and Goga (2012)
analyzed the behavior of v̂arp(m̂n) for different sampling designs.

3 Application to the electricity load curves

General setting Let U be a population of N = 18902 electricity meters installed in small and large
companies sending every 30 minutes the electricity consumption during a period of two weeks. We
aim at estimating the median curve of the electricity consumption during the second week, using the
consumption values recorded during the first week as auxiliary information. This means that we have
measurements at 336 time points during each week. So, our study population of curves is a set of
N = 18902 vectors Y′k = (Yk(t1), . . . , Yk(tD)) with D = 336. Let Xk be the consumption curve for
the kth firm recorded during the first week. The consumption curves present low peaks corresponding
to night-time measurements and high peaks corresponding to middle of the day measurements. The
electricity consumption decreases roughly around the 250th time measurement which corresponds to the
beginning of the weekend. The mean and median curves present the same pattern as shown in Figure 1.

We consider several strategies of fixed size n = 2000 and compare them through simulations. We
distinguish two kinds of sampling designs, based on whether they use or do not use auxiliary information.
If auxiliary information is used at the sampling stage, some changes are needed because the variables
involved now are curves. In the opposite situation, the selection of the sample is realized from the sampling
frame list as for classical multivariate surveys. Finally, the frame list of French firms is well-constructed
being very often updated and most of the designs considered below are often used in practice.

Simple random sampling without replacement (SRSWOR) of size n = 2000 from the population
U of size N consists of taking n elementss from the list of N companies. For each selected company,
we record its consumption electricity of each time point. The median estimator m̂n is obtained from
equation (4) with πk = n/N for all k ∈ U.

Stratified sampling (STRAT) In this case, U is split into H non-overlapping sub-populations Uh of
size Nh, h = 1 . . . , H. The consumption electricity during the first week is used to construct H = 4
strata homogeneous with respect to Y. We select a SRSWOR sample sh of size nh from each stratum
Uh, h = 1 . . . , H. The proportional and the optimal allocations nh, h = 1, . . . ,H are used. m̂n is obtained
from equation (4) with πk = nh/Nh for all k ∈ Uh. STRAT sampling is very efficient if the strata are
homogeneous with respect to the linearized variable. We plot in Figure 3 (b), the consumption mean
within strata during the second week. We notice that stratum 4 corresponds to consumers with high
global levels of consumption, whereas stratum 1, corresponds to consumers with low global consumption.
Figure 3 (a) gives the mean curves of the linearized variable within strata and computed for the second
week. As with the first stratification, the population of the linearized variable curves is also stratified.
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Figure 2: Stratification based on the consumption curve: (a) Mean of linearized variables uk within each
stratum. (b) Mean of the consumption curve Yk within each stratum

Proportional to size sampling without replacement (πPS) In πPS sampling, the sampling is
without-replacement and the probability πk that the individual k belongs to a sample is proportional to
the mean ofXk(t) over all t = 1, . . . , D where D is the number of discretization points in the interval [0, T ].
This means that πk = nX̃k/

∑
k∈U X̃k, where X̃k =

∑D
t=1Xk(t)/D. The Horvitz-Thompson estimator of

the median is obtained by solving the equation (Lardin, Cardot and Goga, 2013):∑
k∈s

Yk − m̂n

πk||Yk − m̂n||
= 0. (6)

SRSWOR with Poststratification (POST) We split the population U into G = 4 post-strata ac-
cording to values of the linearized variable uk computed during the first week. This means that the
post-strata are homogeneous with respect to the linearized variable. Nevertheless, we do not use this
partitioning of U to conduct stratified sampling. We select a SRSWOR sample of size n and for each
sampled unit k, we determine to which post-stratum it belongs. The group membership totals Ng are
known for all g = 1, . . . , G and this auxiliary information may be used to get an improved estimator of
mN . Let sg = s ∩ Ug. Then, the poststratified median estimator satisfies

G∑
g=1

∑
k∈sg

Ng

ng

Yk − m̂n

||Yk − m̂n||
= 0. (7)



Chaouch and Goga (2012) compared these designs and estimators through 500 simulations and by using
the following loss criteria:

R(m̂n) =
∫ T

0
|m̂n(t)−mN (t)| ' 1

D

D∑
d=1

|m̂n(td)−mN (td)|

We observed that clustering the space of functions by performing stratified sampling leads to an important

Mean 1st quartile median 3rd quartile
SRSWOR 2.531 1.322 1.982 3.351
STRAT+PROP 1.7370 1.0470 1.4860 2.2480
STRAT+OPT 2.2940 1.4660 1.9790 2.7830
πPS 7.399 2.869 6.050 10.480
POST 1.041 0.8275 0.9785 1.203

Table 1: Estimation errors for mN .

gain compared to simple random sampling without replacement. We note that the poststratification gives
better results than those obtained with stratified sampling because the post-strata are homogeneous with
respect to the linearized variable uk while the strata are homogeneous with respect to the consumption
electricity Yk. STRAT with proportional allocation gives slightly better results than those obtained with
the optimal allocation. This is due to the fact that the optimal allocation is computed by minimizing
the variance for the mean estimator; we are, however, interested here in estimating the median curve.
Finally, the πPS sampling performs rather poorly for the estimation of the median. Lardin, Cardot and
Goga (2013) suggest B-spline smoothing of the sampling weights 1/πk and this improves greatly the
performance of the πPS design.
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