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Abstract

Modern Business statistics often faces the difficulty that an increasing demand of
information on sub-levels defined by regions or cross-classifications of variables such
as industry classes and business size can be observed, eg for measures of competit-
iveness by policy makers. In order to enable data producers to provide estimates on
those sub-levels, sophisticated stratifications are implemented in the sampling design.
These detailed stratifications may produce two difficulties. First, many strata con-
tain only very few elements and, hence, make it difficult to derive optimal sample
sizes. Second, statistical model building may suffer from the survey weights derived
under these constraints. Additionally, optimization of sampling designs may have a
strong impact on the accuracy of different estimation strategies. The aim of the pa-
per is to evaluate different sampling designs in the context of estimation on sub-levels
by regions and cross-classifications and their impact on these domain estimates. As
estimators of interest, the Horvitz-Thompson- and generalized regression estimator
as design-based methods as well as the Battese-Harter-Fuller-, the You-Rao-, and
the augmented estimators are considered. The analysis is performed by means of a
Monte Carlo study based on Italian business data.

Keywords: optimal sampling design, model-based estimation, design-
based estimation

1 Introduction

Starting with papers by Fay and Herriot (1979) and Battese et al. (1988) modern
small area estimation techniques gained popularity in data production in several fields
of statistics. However, in business statistics the small area estimation techniques were
not applicable for a long time because their assumptions are strongly violated by the
underlying population of interest. The specific hitch of business statistics is that the
distribution of key variables, such as return or turnover are highly skewed with many
outliers that need to be taken into account in the estimation process. Classical large
sample approximations may be questioned as the assumption of a normally distrib-
uted estimate often does not hold even for considerably large sample sizes. Specially,
when distributions with fat-tails or extreme outliers are present, the distribution of
design-based point and variance estimates, resemble more a multimodal distribution.
In small area estimation the assumption of normally distributed model errors and
random effects is often violated, in particular when the covariates at hand are not ex-
plaining enough of the variation of the dependent variable. Further, for model-based
small area estimation the sampling design may impose critical difficulties. This is
heavily criticized by Gelman (2007) with the words weighting is a mess.



In recent years there are some developments of model-based small area estimation
techniques which try to cope with complex survey designs and weighting. These seem
attractive for the application in business statistics. Therefore, it is of interest to study
the performance of both classical design-based and model-based small area estimator
and the model-based small area estimators coping for complex survey designs.

Chapter 2 is devoted to explaining survey designs and estimation techniques for
small domain estimation in business statistics. Chapter 3 comprises the set-up for
our simulation study which is used to compare different small domain estimators
under a variety of survey designs. Chapter 4 gives an outlook on present research of
the paper.

2 Design and estimation in business statistics

The sampling designs used in business statistics typically use stratified random
sampling at some stage, where the strata are often constructed as cross-classifications
of industry classes, enterprise size and a geograpical information. In the following we
briefly describe some of the stratified allocations used in our study. A more detailed
account on these allocation procedures is given in Bernardini Papalia et al. (2013,
Ch. 4.3). A very basic procedure is the equal allocation which allocates the sample
size to all the strata, i.e.

(1) nEqualh =
n

L
.

Note that (1) may lead to highly different sampling fractions in the strata, if the
stratum sizes are highly variable. If a constant sampling fraction within the strata
is desired and a variation of the sample sizes is accepted, the proportional allocation
may be used. It is given by

(2) nProportionalh = n
Nh

N
.

While the equal allocation may be suitable for domain estimation due to a guaranteed
sample size in the strata, the proportional allocation may be more efficient for the
estimation at national level as it allocates more sample size to the larger strata.
Thus, a convex combination of the allocations (1) and (2) as proposed by Costa
et al. (2004) may give a reasonable balance between these goals. If the sole purpose
of a survey is to produce efficient estimates at the national level and the stratum
specific variances are known, the optimal allocation due to Neyman and Tschuprow
may be preferred as it minimizes the variance under stratified random sampling. The
optimal allocation assuming large Nh so that the finite population correction may
be ignored, follows as

(3) nOptimal
h = n

Nhσh
L∑

k=1

Nkσk

,

where σh refers to the standard deviation in stratum h of our variable of interest.
The optimality of allocation (3) for national design-based estimation may come at
the expense of reliable estimation on the domain-level as very small sample sizes may



result. Further, the optimal allocation may result in highly different design weights,
which may be an issue for model-based small domain estimation strategies. These
disadvantages of the optimal allocation are dealt with by introducing box-constraints
for the stratum-specific sample sizes into the optimization procedure as proposed by
Gabler et al. (2012). They consider the following optimization problem:

(4)

min
nh

||RRMSE<·>(µ̂)||2 = 2

√√√√ L∑
h=1

RRMSE(µ̂<h>)

s.t. mh ≤ nh ≤Mh, h = 1, . . . , L

L∑
h=1

nh ≤ n,

where mh and Mh denote the lower and upper bound of the sample size in stratum
h. In the solution of problem (4), the set of stratum indices is split into three parts.

For the first group of strata, the unconstrained optimal sample size nOptimal
h would

be smaller than the lower bound mh. As this violates the condition mh ≤ nh, the
resulting sample size is set to the lower bound. For the second group of strata
nOptimal
h > Mh , and to fulfil the constraint nh ≤ Mh, nh is set to Mh. In the re-

maining strata, the optimal allocation (3) is applied using the remaining sample size.
In addition to these allocations, also sampling strategies may be considered, where
the allocation is determined as to be optimal for a given design-based estimation
procedure. Examples for this approach in the context of stratified sampling are the
allocations due to Longford (2006) and Choudhry et al. (2012).

Small domain estimators are used to produce estimates of a domain-specific
quantity, such as the domain mean or the domain total for a variable of interest.
In the following we focus on estimating the domain mean, which is defined as
µd = 1

Nd
ydj , d = 1, . . . , D, where ydj denotes the response of unit j in domain

d and Nd refers to the population size in domain d. The different small domain
estimators may be derived from a design-based perspective or a model-based per-
spective. A widely used design-based estimator in survey sampling is the weighted
sample mean, which is given by

(5) µ̂d,Direct =

nd∑
j=1

wdjydj

nd∑
j=1

wdj

,

where wdj denotes the design weight of unit j in domain d. Estimator (5) has
good design-based properties, but it may not be efficient for the estimation of small
domains as it does not use any auxiliary information. The family of generalized
regression estimators (GREG) allows to incoporate auxiliary information through an
assisting model to reduce the variance compared to the direct estimator (5). In a
small domain setting, the general form of the GREG is given by

(6) µ̂d,GREG =
1

Nd

 Nd∑
j=1

ŷdj +

nd∑
j=1

wdj (ydj − ŷdj)

 ,



where the ŷdj refer to the predicted values under the assumed assisting model. It can
be seen that the sum of the predicted values for all units in a particular domain is
corrected by the weighted residuals from all sampled units in that domain. Note that
formula (6) accounts for various specifications of the assisting model (cf. Lehtonen
and Veijanen, 2009).

In the case of model-based estimators we assume that the following unit-level
mixed model holds

(7) ydj = xT
djβ + ud + εdj , d = 1, . . . , D, j = 1, . . . , Nd,

where xdj refers to the p-dimensional vector of covariates for unit j in domain d, β

denotes the p-dimensional vector of estimated fixed effects, ud
iid∼ N(0, σ2u) , εdj

iid∼
N(0, σ2ε) and the domain specific random effects ud are independent from the sampling
errors εdj . An empirical best linear unbiased predictor (EBLUP) under model (7)
has been derived by Battese et al. (1988). Their predictor is given by

(8)
µ̂ULEBLUP
d = γ̂d

[
yd + (Xd − xd)T β̂

]
+ (1− γ̂d)X

T
d β̂

= X
T
d β̂ + ûd.

It can be seen that (8) is a convex combination of the unweighted survey regression

estimator
[
yd + (Xd − xd)T β̂

]
and the regression synthetic component X

T
d β̂. As

the local sample size nd increases, γ̂d tends to 1 and more weight is attached to
the survey regression estimator. For small nd and small estimated variances of the
random effect, σ̂2u, the shrinkage coefficient γ̂d is close to 0, and the estimator tends to
its synthetic component. The estimator is not design-consistent unless the sampling
design is simple random sampling within the domains. This assumption, however, is
violated in most business surveys as discussed above.

An estimator based on model (7) which is nonetheless design-consistent is the
pseudo EBLUP due to You and Rao (2002). They transform the unit-level mixed
model (7) to a survey-weighted area-level model, where the weights are normalized
within each area. The pseudo EBLUP under the survey-weighted area-level model
follows as:

(9)
µ̂d,Y R = X̄

T
d β̂Y R + ûd,Y R with

ûd,Y R = γ̂dw

(
ȳdw − x̄T

dwβ̂Y R

)
,

where β̂Y R, γ̂dw, ȳdw and x̄dw are estimated under the survey-weighted area-level
model. In addition to being design-consistent, estimator (9) also satisfies the bench-
marking property automatically (cf. You and Rao, 2002).

An implicit assumption when deriving estimators (8) and (9) is that the sampling
design is non-informative, i.e. that the model which holds for the population holds for
the sample as well (cf. Pfeffermann and Sverchkov, 2009). In business surveys, this
assumption may be violated as the sampling weights might be related to the variable
of interest after conditioning on the covariates. In some situations the bias due to an
informative sampling design might be overcome by including the design weights as
an additional covariate in the statistical model. Verret et al. (2010) consider using
augmented models for the estimators (8) and (9).



3 Outlook on the simulation study

Our design-based simulation study is conducted using the fully synthetic TRItalia
dataset described in Bernardini Papalia et al. (2013, Ch. 5). TRItalia focuses on
small and medium enterprises from the Italian population of businesses in 2003. Our
variable of interest is the mean of labour costs in each domain. The domains are
defined as cross-classifications of the first digit of the industry code and the twenty
Italian provinces (NUTS 2), yielding D = 180 domains. Our sampling design is
stratified random sampling, where the strata are defined as cross-classifications of
the domain and the four size classes in terms of the number of employees, giving us
L = 720 strata. As allocations we consider the equal allocation, the proportional al-
location, the optimal allocation and box-constraint optimal allocations with Gelman
factors (cf. Burgard et al., 2012) constrained to 10 and 50. Due to the fact that about
90% of all enterprises belong to the group with one to five employees, the stratum
sizes are extremely variable. In order to facilitate proper variance estimation for
design-based methods, we require at least two units to be drawn from each stratum
giving rise to large sampling fractions in very small strata as indicated by Figure 1.
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Figure 1: Sampling fractions
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