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Abstract

Kernel based methods and in particular support vector Machines (SVMs) based on a general loss
function and on a general kernel play an important role in statistical machine learning for many rea-
sons. Such general SVMs can be considered as certain Hilbert-space valued kernel based regularized
M-estimators. If some weak assumptions are satisfied, such SVMs are solutions of a well-posed mathe-
matical problem in Hadamard’s sense (i.e., there exists a unique solution which continuously depends
on the data), are universally consistent with good learning rates, are statistically stable with respect
to many notions of statistical robustness, and are attractive from a computational point of view. Last
but not least, such kernel based methods have demonstrated their good generalization properties in
many large scale applications with an unknown high-dimensional dependency structure.
The question how to compute a good approximation of the finite sample distribution of such kernel
based methods is not yet fully addressed in the literature. From an applied point of view, this might
be considered as a serious gap, because knowledge of the finite sample distribution or the appropri-
ateness of an asymptotic distribution is the basis to draw statistical decisions like confidence regions,
prediction intervals, tolerance intervals or tests. Here we use the empirical bootstrap (Efron, 1979)
and show that this approach provides a consistent estimator for the distribution of SVMs under some
relatively mild conditions.
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1 Introduction

Support vector machines and related kernel based methods can be considered as very successful methods
from modern statistical machine learning theory. They have good statistical and numerical properties
under weak assumptions and have demonstrated their often good generalization properties in many
applications, see e.g. Vapnik (1995, 1998), Schölkopf and Smola (2002), and Steinwart and Christmann
(2008). To our best knowledge, the original SVM approach by Boser et al. (1992) was derived from the
generalized portrait algorithm invented earlier by Vapnik and Lerner (1963). Throughout the paper, the
term SVM will be used in the broad sense, i.e. an SVM is defined by (2.1) and is based on a general
convex loss function L and on a general kernel k.

SVMs based on many standard kernels as for example the classical Gaussian RBF kernel are non-
parametric methods. The finite sample distribution of many nonparametric methods is unfortunately
unknown because the distribution P from which the data were generated is usually completely unknown
and because there are often only asymptotical results describing the consistency or the rate of convergence
of such methods known so far. Furthermore, there is in general no uniform rate of convergence for such
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nonparametric methods due to the famous no-free-lunch theorem, see Devroye (1982) and Devroye et al.

(1996). Informally speaking, the no-free-lunch theorem states that, for sufficiently malign distributions,
the average risk of any statistical (classification) method may tend arbitrarily slowly to zero. Theses
facts are true for SVMs. SVMs are known to be universally consistent and fast rates of convergence are
known for broad subsets of all probability distributions. The asymptotic normality of SVMs was recently
shown by Hable (2012) under certain conditions. Of course, confidence intervals based on this asymptotic
approximation are always symmetric.

Here, we apply a different approach to SVMs, namely Efron’s empirical bootstrap. The goal of
this paper is to show that empirical bootstrap approximations for SVMs are consistent under mild
assumptions, provided these SVMs are based on a general convex and smooth loss function and on a
general smooth kernel. More precisely, convergence in outer probability is shown. This result is useful to
draw statistical decisions based on SVMs, e.g. confidence intervals, tolerance intervals and so on. Note,
that confidence intervals based on this bootstrap approach can be asymmetric.

We mention that both the sequence of SVMs and the sequence of their corresponding risks are quali-
tatively robust under mild assumptions, see Christmann et al. (2013). Hence, Efron’s bootstap approach
is quite successful for SVMs from several aspects.

The rest of the paper has the following structure. Section 2 gives a brief introduction into SVMs.
Section 3 gives the result.

2 Support Vector Machines

Current statistical applications are often characterized by a wealth of large and high-dimensional data
sets with complicated but unknown dependency structures. In classification and in regression problems
there is a variable of main interest, often called “output values” or “response”, and a number of potential
explanatory variables, which are often called “input values”. These input values are used to model the
observed output values or to predict future output values. The data set consists of n pairs (x1, y1), . . . ,
(xn, yn), which will be assumed to be realizations of independent and identically distributed random pairs
(Xi, Yi) with values in some space X × Y. We denote the joint distribution of (Xi, Yi) by P. We are
interested in minimizing the risk or to obtain a function f : X → Y such that f(x) is a good predictor for
the response y, if X = x is observed. The prediction should be made in an automatic way. We refer to
this process of determining a prediction method as “statistical machine learning”, see e.g. Vapnik (1995,
1998); Schölkopf and Smola (2002); Cucker and Zhou (2007); Smale and Zhou (2007) for details. Here,
by “good predictor” we mean that f minimizes the expected loss, i.e. the risk,

RL,P(f) = EP [L (X,Y, f(X))] ,

where P denotes the unknown joint distribution of the random pair (X,Y ) and L : X ×Y×R → [0,+∞)
is a fixed loss function. As a simple example, the least squares loss

L(X,Y, f(X)) = (Y − f(X))2

yields the optimal predictor f(x) = EP(Y |X = x), x ∈ X . Because P is unknown, we can neither
compute nor minimize the risk RL,P(f) directly.

Support vector machines, see Vapnik and Lerner (1963), Boser et al. (1992), Vapnik (1995, 1998), pro-
vide a highly versatile framework to perform statistical machine learning in a wide variety of setups. The
minimization of regularized empirical risks over reproducing kernel Hilbert spaces was already considered
e.g. by Poggio and Girosi (1990). Given a (measurable real-valued) kernel

k : X × X → R



(of course, complex-valued kernels can also be used) we consider predictors f ∈ H, where H denotes the
corresponding reproducing kernel Hilbert space of functions from X to R. The space H includes, for
example, all functions of the form

f(x) =
m
∑

j=1

αj k(x, xj)

where xj are arbitrary elements in X and αj ∈ R, 1 ≤ j ≤ m. To avoid overfitting, a support vector
machine fL,P,λ is usually defined as the solution of a regularized risk minimization problem. More
precisely, given a loss function L and kernel k, a support vector machine is defined by

fL,P,λ = arg inf
f∈H

EPL (X,Y, f(X)) + λ ‖f‖2H , (2.1)

where λ ∈ (0,∞) is the regularization parameter. For a given data set D = ((x1, y1), . . . , (xn, yn)) ∈
(X × Y)n, the corresponding estimated function is given by

fL,Dn,λ = arg inf
f∈H

1

n

n
∑

i=1

L (xi, yi, f(xi)) + λ ‖f‖2H , (2.2)

where Dn denotes the empirical distribution based on D. Note that the optimization problem (2.2)
corresponds to (2.1) when using Dn instead of P.

Efficient algorithms to compute f̂n := fL,Dn,λ exist for a number of convex loss functions and there are
often good reasons to consider other convex loss functions than the classical least squares loss function.
Examples are the hinge loss

L(X,Y, f(X)) = max{0, 1 − Y · f(X)}
for binary classification purposes or the ǫ-insensitive loss

L(X,Y, f(X)) = max{0, |Y − f(X)| − ǫ}

for regression purposes, where ǫ > 0. As these loss functions are not differentiable, the logistic loss for
classification

L(X,Y, f(X)) = ln(1 + exp(−Y · f(X)))

and for regression
L(X,Y, f(X)) = − ln(4eY −f(X)/(1 + eY−f(X))2)

and Huber-type loss functions are also used in practice. These loss functions are with respect to the last
argument convex and Lipschitz continuous and can be considered as smoothed versions of the hinge and
the ǫ-insensitive loss functions.

An important component of statistical analyses concerns quantifying and incorporating uncertainty
(e.g. sampling variability) in the reported estimates. For example, one may want to include confidence
bounds along the individual predicted values f̂n(xi) obtained from (2.2). Unfortunately, the sampling
distribution of the estimated function f̂n is unknown. Recently, Hable (2012) derived the asymptotic
distribution of SVMs under some mild conditions. Asymptotic confidence intervals based on those general
results are always symmetric.

Here, we are interested in approximating the finite sample distribution of SVMs by Efron’s empirical
bootstrap approach (Efron, 1979), because confidence intervals based on this approach can be asymmetric.
To fix ideas, consider an operator S : M → W, where M is a set of probability measures on some metric
space Z and let W denote a metric space. Many estimators can be included in this framework. Simple
examples include the sample mean (with functional S(P) =

∫

Z dP) and M-estimators (with operator
defined implicitly as the solution to the equation EPΨ(Z,S(P)) = 0). Let B(Z) be the Borel σ-algebra



on Z = X ×Y and denote the set of all Borel probability measures on (Z,B(Z)) by M1(Z,B(Z)). Then,
(2.1) specifies the SVM operator

S : M → H, S(P) = fL,P,λ , (2.3)

where M ⊂ M1(Z,B(Z)). Following van der Vaart and Wellner (1996, p. 345), let

Pn =
1

n

n
∑

i=1

δZi

be the empirical measure of an independent and identically distributed (i.i.d.) random sample Zi =
(Xi, Yi), i = 1, . . . , n, from a probability measure P. Given the sample values, let Ẑ1, . . . , Ẑn be an i.i.d.
random sample from Pn. The bootstrap empirical distribution is the empirical measure

P̂n =
1

n

n
∑

i=1

δ
Ẑi

,

and the bootstrap empirical process Ĝn is

Ĝn =
√
n (P̂n − Pn) .

Let Sn(Z1, . . . , Zn) = S(Pn) be the corresponding estimator and denote the distribution of S(Pn) by

Ln(S; P) = L(S(Pn)).

If P was known to us, we could estimate this sampling distribution by drawing a large number of
random samples from P and evaluating our estimator on them. The basic idea of Efron’s bootstrap
approach is to replace the unknown distribution P by the natural non-parametric estimator Pn. In other
words, we estimate the distribution of our estimator of interest by its sampling distribution when the
data are generated by Pn. In symbols, the empirical bootstrap proposes to use

̂Ln(S; P) = Ln(S;Pn).

Since this distribution is generally unknown, in practice one uses Monte Carlo simulation to estimate it
by repeatedly evaluating the estimator on random samples drawn with replacement from Pn.

3 Consistency of Bootstrap SVMs

In this section it will be shown that the general functional delta-method for bootstrap in probability,
see van der Vaart and Wellner (1996, Thm. 3.9.11, p. 378) is applicable for SVMs under appropriate
conditions. I.e., the weak consistency of bootstrap estimators carries over to the Hadamard-differentiable
SVM operator S given in (2.3) in the sense that the sequence of “conditional random laws” (given
(X1, Y1), (X2, Y2), . . .) of

√
n
(

S(P̂n)− S(Pn)
)

= L
(√

n(f
L,P̂n,λ

− fL,Pn,λ)
)

(3.4)

is asymptotically consistent in probability for estimating the laws of the random elements
√
n
(

S(Pn)− S(P)
)

= L
(√

n(fL,Pn,λ − fL,P,λ)
)

. (3.5)

In other words, if n is large, the ”random distribution”

L (
√
n(f

L,P̂n,λ
− fL,Pn,λ))

based on bootstrapping an SVM can be considered as a valid approximation of the unknown distribution

L (
√
n(fL,Pn,λ − fL,P,λ)).



Assumption 3.1 Let X ⊂ R
d be closed and bounded and let Y ⊂ R be closed. Assume that k : X ×X →

R is the restriction of an m-times continuously differentiable kernel k̃ : Rd ×R
d → R such that m > d/2

and k 6= 0. Let H be the RKHS of k and let P be a probability distribution on (X × Y,B(X × Y)). Let

L : X × Y ×R → [0,∞) be a convex, P-square-integrable Nemitski loss function of order p ∈ [1,∞) such

that the partial derivatives

L′(x, y, t) :=
∂L

∂t
(x, y, t) and L′′(x, y, t) :=

∂2L

∂2t
(x, y, t)

exist for every (x, y, t) ∈ X × Y ×R. Assume that the maps

(x, y, t) 7→ L′(x, y, t) and (x, y, t) 7→ L′′(x, y, t)

are continuous. Furthermore, assume that for every a ∈ (0,∞), there is a b′a ∈ L2(P) and a constant

b′′a ∈ [0,∞) such that, for every (x, y) ∈ X × Y,

sup
t∈[−a,a]

|L′(x, y, t)| ≤ b′a(x, y) and sup
t∈[−a,a]

|L′′(x, y, t)| ≤ b′′ .

The conditions on the kernel k in Assumption 3.1 are satisfied for many kernels used in practice, e.g.,
Gaussian RBF kernels, exponential kernels, polynomial kernels, and linear kernel, but also for Wendland’s
compactly supported RBF kernels kd,ℓ based on certain univariate polynomials pd,ℓ of degree ⌊d/2⌋+3ℓ+1
for ℓ ∈ N such that ℓ > d/4, see Wendland (2005, Thm. 9.13).

The conditions on the loss function L in Assumption 3.1 are satisfied, e.g., for the logistic loss for
classification or for regression. The popular non-smooth loss functions hinge, ε-insensitive, and pinball
are not covered. However, Hable (2012, Remark 3.5) described an analytical method to approximate
such non-smooth loss functions up to an arbitrarily good precision ǫ > 0 by a convex P-square integrable
Nemitski loss function of order p ∈ [1,∞), see Steinwart and Christmann (2008, Def. 2.16).

We can now state our result on the consistency of the bootstrap approach for SVMs.

Theorem 3.2 Let Assumption 3.1 be satisfied. Let λ ∈ (0,∞). Then

sup
h∈BL1(H)

∣

∣EMh
(√

n(f
L,P̂n,λ

− fL,Pn,λ)
)

− Eh(S′

P(G))
∣

∣ → 0, (3.6)

EMh
(√

n(f
L,P̂n,λ

− fL,Pn,λ)
)

∗ − EMh
(√

n(f
L,P̂n,λ

− fL,Pn,λ)
)

∗
→ 0, (3.7)

converge in outer probability, where G is a tight Borel-measurable Gaussian process, S′

P is a continuous

linear operator with

S′

P(Q) = −K−1
P

(

EQ

(

L′(X,Y, fL,P,λ(X))Φ(X)
))

, Q ∈ M1(X × Y,B(X × Y)) (3.8)

and

KP : H → H, KP(f) = 2λf + EP

(

L′′(X,Y, fL,P,λ(X))f(X)Φ(X)
)

(3.9)

is a continuous linear operator which is invertible.

For details on S′

P, KP, and G we refer to Hable (2012) and Christmann and Hable (2013). Note that S′

P

andKP already appeared in the derivation of influence functions for SVMs, see Christmann and Steinwart
(2004) and Christmann and Steinwart (2007). The proof of Theorem 3.2 is somewhat lengthy and given
in Christmann and Hable (2013). The idea of the proof is to use a functional delta-method proven in
van der Vaart and Wellner (1996, Thm. 3.6.2, Thm. 3.9.11) and some empirical process techniques, some
results on SVMs given in Steinwart and Christmann (2008) and the recently shown result, that SVMs
are based on a map φ which is Hadamard differentiable at P tangentially to some appropriate subspace,
see Hable (2012). Note that λ is fixed in Theorem 3.2. The cases that λ depends on n or is even data
dependent is beyond the scope of this paper.
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