
IPFP:IPFP:IPFP:IPFP: AnAnAnAn ImprovedImprovedImprovedImproved ParallelParallelParallelParallel FP-GrowthFP-GrowthFP-GrowthFP-Growth AlgorithmAlgorithmAlgorithmAlgorithm forforforfor FrequentFrequentFrequentFrequent ItemsetsItemsetsItemsetsItemsets MiningMiningMiningMining

Dawen Xia1, 2, 4 , Yanhui Zhou1, 2, Zhuobo Rong1, and Zili Zhang1, 2, 3, 5
1School of Computer and Information Science, Southwest University, Chongqing, China

2 Institute of Statistics, Southwest University, Chongqing, China
3School of Information Technology, Deakin University, Victoria, Australia

4Guizhou Minzu University, Guiyang, China
5 Corresponding author: Zili Zhang, e-mail: zhangzl@swu.edu.cn

AbstractAbstractAbstractAbstract

As an important part of discovering association rules, frequent itemsets mining plays a
key role in mining associations, correlations, causality and other important data mining
tasks. Since some traditional frequent itemsets mining algorithms are unable to handle
massive small files datasets effectively, such as high memory cost, high I/O overhead,
and low computing performance, we propose an improved Parallel FP-Growth (IPFP)
algorithm and discuss its applications in this paper. In particular, we introduce a small
files processing strategy for massive small files datasets to compensate defects of low
read/write speed and low processing efficiency in Hadoop. Moreover, we use
MapReduce to implement the parallelization of FP-Growth algorithm, thereby
improving the overall performance of frequent itemsets mining. The experimental
results show that the IPFP algorithm is feasible and valid with a good speedup and a
higher mining efficiency, and can meet the rapidly growing needs of frequent itemsets
mining for massive small files datasets.

Keywords:Keywords:Keywords:Keywords: Frequent itemsets mining, Hadoop MapReduce, Parallel FP-Growth,
Small files problem

1111.... IntroductionIntroductionIntroductionIntroduction
As data management and analysis are facing new challenges in the age of big data, the
rationality and timeliness of the data processing methods are becoming the research
hotspot of big data statistical analysis, and big data association analysis greatly
increases the profits of enterprises.
As one of the important research directions of data mining, frequent itemsets mining plays
an essential role in mining associations, correlations, causality and other important data
mining tasks (Agrawal and Srikant (1994); Brin et al. (1997); Silverstein et al. (2000);
Han et al. (2000).), which is a strong impetus to the applications of association rules in
markets selection, decision analysis and business management (Liao et al. (2010); Cil
(2012).). The existing classical frequent itemsets mining algorithms are breadth-first
algorithm Apriori proposed by Agrawal et al. in 1994 and depth-priority algorithm
FP-Growth presented by Han et al. in 2000. In order to improve the efficiency of frequent
itemsets mining, many researchers have proposed several methods to optimize classical
algorithms (Park et al. (1995); Grahne et al. (2000); Tsay et al. (2009); Lin et al.
(2011).). Meanwhile, to address the bottleneck of mining performance and reduce memory
consumption and computation cost of the machine in the single machine environment,
parallel and distributed algorithms are proposed (Agrawal and Shafer (1996); Zaki et al.

mailto:zhangzl@swu.edu.cn


(1997); Zaïane et al. (2001); Pramudiono and Kitsuregawa (2003); Tanbeer et al.
(2009).). For traditional methods, the applications of corresponding algorithms for frequent
itemsets mining in the large-scale datasets will easily cause high CPU consumption, high
memory cost, high I/O overhead, low computing performance and other issues.
As typical methods of Hadoop Distributed File System (HDFS) and MapReduce parallel
programming model provide a new idea for handling big data. In the frequent itemsets
mining for large-scale data, a MapReduce approach of parallel FP-Growth (PFP) algorithm
is proposed in (Li et al. (2008)), and the performance of PFP algorithm is enhanced by
adding load balancing features in (Zhou et al. (2010)), but these methods ignore frequent
itemsets mining for massive small files datasets in Hadoop.
With the arrival of big data era, massive data are growing rapidly. However, in reality, most
of the large-scale data are composed of massive small files. Small files usually refer to
those file sizes, which are less than 64 MB. According to a study in 2007 at the National
Energy Research Scientific Computing Center, 43% of the over 13 million files on a shared
parallel file system are under 64 KB and 99% are under 64 MB (Petascale Data Storage
Institute (2007)), and more scientific applications consist of a large number of small files
are depicted in (Carns et al. (2009)). Nevertheless, in the face of massive small files
datasets, the constructed FP-tree in Parallel FP-Growth (PFP) algorithm cannot fit into the
memory, which often causes problems such as memory overflow and huge communication
overhead. Meanwhile, the computing efficiency of the Hadoop platform largely depends on
the performance of HDFS and MapReduce (White (2012)), and Hadoop was, at first,
designed specifically to handle streaming large files, so when dealing with massive small
files, there are significant limitations. Massive small files will reduce the performance of
Hadoop, which is mainly shown in the following two aspects: (1) The access efficiency
of HDFS is decreased. (2) The additional overhead of MapReduce is increased.
This paper proposes an improved Parallel FP-Growth (IPFP) algorithm and discusses
its applications. We introduce a small files processing strategy in the FP-Growth algor-
ithm, to compensate defects of low read/write speed and low processing efficiency for
handling the massive small file datasets in Hadoop, and to enhance the access
efficiency of HDFS and reduce the additional overhead of MapReduce. On the other
hand, we use MapReduce to implement the parallelization of FP-Growth algorithm,
thereby improving the overall performance and efficiency of frequent itemsets mining.
The remainder of this paper is organized as follows. First, the proposed algorithm is
described in detail in Section 2. Then, the implementation of IPFP algorithm is
depicted in Section 3. Next, the results of several experiments and analysis are
presented in Section 4, and the actual application of IPFP algorithm is given in Section
5. Finally, the paper is concluded in Section 6.

2222.... IPFPIPFPIPFPIPFP aaaalgorithmlgorithmlgorithmlgorithm ddddescriptionescriptionescriptionescription
In this section, we propose the IPFP algorithm for mining frequent itemsets in massive
small files datasets in detail.
(1) Write a small files processing program—Sequence File. The Sequence File is used
to merge all massive small files, which are composed of a large amount of transaction
datasets stored in HDFS, into a large transaction data file (transaction database).
(2) Equally divide the transaction database into several sub-transaction databases and



then assign them to different nodes in Hadoop cluster. This step is automatically
operated by HDFS, when necessary we can use the balance command enabling its file
system to achieve load balancing.
(3) Compute support count of each item in the transaction database by MapReduce,
and then obtain the set of I_list from support count in descending order.
(4) Divide I_list into M groups, denoted as Group_list (abbreviated as G_list), and
assign group_id for each group sequentially and each G_list contains a set of items.
(5) Complete the parallel computing of FP-Growth algorithm by MapReduce. �The
Map function compares the item of each transaction in the sub-transaction database
with the item in G_list. If they are same, then distribute the corresponding transaction
to the machine associated with G_list. Otherwise, compares with the next item in
G_list. Eventually, the independent sub-transaction databases corresponded to G_list
will be produced. � The Reduce function recursively computes the independent
sub-transaction databases generated in step � , and then constructs the FP-tree. This
step is similar to the process of traditional FP-tree generation, but the difference is a
size K max-heap HP which stores frequent pattern of each item.
(6) Aggregate the local frequent itemsets generated from each node in the cluster by
MapReduce, and finally get the global frequent itemsets.

3333.... IIIIPFPPFPPFPPFP aaaalgorithmlgorithmlgorithmlgorithm iiiimplementationmplementationmplementationmplementation
In this section, we implement the IPFP algorithm, which is mainly composed of four
steps as described in the following.
StepStepStepStep 1:1:1:1: Merge massive small files. Sequence File is composed of a series of <key,
value>, where the key is the name of small files and the value is the content of small
files before merging. Sequence File exploits three classes—WholeFileInputFormat,
WholeFileRecordReader and SmallFilesToSequenceFileConverter, to merge the mass-
ive small files into a large file. (1) WholeFileInputFormat class: 1) The isSplitable ( )
method reloads and returns the value of false, and the purpose is to maintain the input
file not to be divided into slices. 2) The getRecordReader ( ) method returns a custom-
ized RecordReader. (2) WholeFileRecordReader class: the FileSplit is converted into a
record, where the key of the record is the filename and the value is the content of this
file. (3) SmallFilesToSequenceFileConverter class: Massive small files are merged
into a sequential file, and this class contains the Map ( ) and the Reduce ( ). The input
format of data isWholeFileInputFormat, while the output format is SequenceFileOut-
putFormat.
StepStepStepStep 2:2:2:2: Compute I_list. The complexity of time and space is O (TDBsize/P), (TDBsize:
the size of transaction database, P: the number of parallel MapReduce programs).
StepStepStepStep 3:3:3:3: Generate G_list from I_list, and complete parallel computing of FP-Growth
algorithm. Map ( ) judges which G_list the item of transactions in the machine belongs
to, and then sends this transaction to the corresponding G_list machine. In order to
avoid sending duplicate transaction, we delete the duplicate entries in the hash table.
Each Reduce ( ) handles the independent sub-transaction database associated with
G_list, which creates heap HP with a size of K for each item in G_list.
StepStepStepStep 4:4:4:4: Aggregate local frequent itemsets generated in the previous step from each
node, and then we get global frequent itemsets.



4444.... ExperimentsExperimentsExperimentsExperiments andandandand rrrresultsesultsesultsesults
In this section, we verify the feasibility, speedup, validity and efficiency of IPFP
algorithm by two experiments.
The experimental Hadoop cluster is composed of one Master machine and four Slave
machines with Intel Pentium（R）Dual-Core E5700 3.00GHz CPU and 2.00GB RAM.
All the experiments are performed on Ubuntu 12.04 OS with Hadoop 0.20.2, Jdk 1.6.0
and Eclipse 3.7.1. The real data from the Frequent Itemset Mining Dataset Repository
are used as the experimental data1, which are processed into three groups of different
sizes datasets (Datasets1: 2115 small files, Datasets2: 4281 small files and Datasets3:
8583 small files, and each file is less than 64KB). The feasibility, validity, speedup and
efficiency are used to evaluate the overall performance of IPFP algorithm and compare
it with the PFP algorithm in the same environment.
4444....1111.... Feasibility and speedup evaluation of IPFP
The experimental results are shown in Figure 1. With massive small files datasets, the
IPFP algorithm can normally complete distributed computing and accurately find the
frequent itemsets in the MapReduce environment, which shows that the IPFP
algorithm is feasible. When Datanodes are increasing gradually, the running time of
IPFP algorithm significantly decreases and the processing performance is greatly
improved, which shows that the IPFP algorithm has a good speedup.
4444....2.2.2.2. Validity and efficiency evaluation of IPFP
The experimental results are shown in Figure 2. When the cluster in the pseudo-distri-
buted environment (only one Datanode) switches to a fully distributed environment
(more than two Datanodes), the processing capability of IPFP algorithm is significant-
ly enhanced, which shows that the IPFP algorithm is valid. When Datanodes are
increasing gradually, the running time of IPFP algorithm is always less than that of
PFP algorithm, which shows that the IPFP algorithm has a higher mining efficiency
than PFP algorithm.

1 2 3 4

300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

 

 

Th
e 

ru
nn

in
g 

tim
e 

of
 IP

FP
/ S

The number of Datanodes

 Datasets3
 Datasets2
 Datasets1

Figure 1. The feasibility and speedup of IPFP.

1 2 3 4

300

400

500

600

700

800

 

 

Ru
nn

in
g 

tim
e/

 S

The number of Datanodes

 IPFP
 PFP

1 2 3 4

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

 

 

Ru
nn

in
g 

tim
e/

 S

The number of Datanodes

 IPFP
 PFP

1 2 3 4

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

 

 

Ru
nn

in
g 

tim
e/

 S

The number of Datanodes

 IPFP
 PFP

(a) (b) (c)
Figure 2. The validity and efficiency of IPFP and PFP for frequent itemsets mining in

Datasets1 (a), Datasets2 (b) and Datasets3 (c).
1http://fimi.ua.ac.be/data/

app:ds:accurately


5.5.5.5.ApplicationApplicationApplicationApplicationssss
In this section, we apply the IPFP algorithm to the association analysis of the national
college entrance examination and admission data of China.
The IPFP algorithm is used to analyze the unequal strength association of colleges,
majors, areas from the real massive small files datasets of the national college entrance
examination and admission, which are composed of candidates basic data, recruiting
application data, major setting data and admission result data from the year 2003 to
2012 in a province. We have drawn some important and valuable results as follows: (1)
There is a strong association relationship among Southwest University, Chongqing
University of Posts and Telecommunications, and Southwest University of Political
Science and Law; and it is same with Guizhou Minzu University and Guizhou Univer-
sity of Finance and Economics. (2) Colleges lay in the coastal cities have greater
popularity, and admission scores of colleges in the North China is much higher than
that in the Northwest. (3) The Administration Management major of a college is the
most popular, and English and International Economy and Trade major are quite
popular as well.
When filling out college recruiting applications, candidates should maintain a certain
gradient under the same circumstance, and try to avoid applying to colleges and
majors with strong association and colleges in these areas with greater popularity, so
that they will obtain more admission opportunities. At the same time, in this
association analysis, the IPFP algorithm shows better processing performance and a
higher mining efficiency than PFP algorithm.

6.6.6.6. ConclusionsConclusionsConclusionsConclusions
In this paper, owing to the small files processing strategy, the IPFP algorithm can
reduce memory cost greatly and improve the efficiency of data access, thus avoids
memory overflow and reduces I/O overhead. Meanwhile, the IPFP algorithm is
migrated to the MapReduce environment, which can complete frequent itemsets
mining efficiently and thus enhance the overall performance of FP-Growth algorithm.
The experimental results show that IPFP algorithm can make a breakthrough where
PFP algorithm has its defects in handling massive small files datasets, and has a good
speedup and a higher mining efficiency.

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements This work was supported by the National Science and Technolo-
gy Support Program of China (No. 2012BAD35B08), the Science and Technology
Foundation of Guizhou (No. LKM201212), and the SWU Grant for Statistics Ph.D.

ReferencesReferencesReferencesReferences
Agrawal, R. and Shafer, J. C. (1996) “Parallel mining of association rules,” IEEE Tra-

nsactions on Knowledge and Data Engineering, 8(6), 962-969.
Agrawal, R. and Srikant, R. (1994) “Fast algorithms for mining association rules,” In:

Proceedings of the 1994 international conference on very large data bases (VLDB’
94), Santiago, Chile, 487-499.

Brin, S., Motwani, R. and Silverstein, C. (1997) “Beyond market basket: generalizing
association rules to correlations,” In: Proceeding of the 1997 ACM SIGMOD inter-
national conference on management of data (SIGMOD’97), Tucson, AZ, 265-276.



Carns, P., Lang, S., Ross, R., Vilayannur, M., Kunkel, J. and Ludwig, T. (2009) “Small
File access in parallel file systems,” In: Proceeding of the 2009 IEEE international
symposium on parallel and distributed processing, Rome, Italy, 1-11.

Cil, I. (2012) “Consumption universes based supermarket layout through association r-
ule mining and multidimensional scaling,” Expert Systems with Applications, 39(1
0), 8611-8625.

Grahne, G., Lakshmanan, L. and Wang, X. (2000) “Efficient mining of constrained co-
rrelated sets,” In: Proceeding of the 2000 international conference on data engine-
ering (ICDE’00), San Diego, CA, 512-521.

Han, J., Pei, J. and Yin, Y. (2000) “Mining frequent patterns without candidate genera-
tion,” In: Proceeding of the 2000 ACM SIGMOD international conference on man-
agement of data (SIGMOD’00), Dallas, TX, 1-12.

Li, H., Wang, Y., Zhang, D., Zhang, M. and Chang, E. Y. (2008) “PFP: Parallel FP-Gr-
owth for query recommendation,” In: Proceeding of the 2008 ACM conference on
Recommender systems, Lausanne, Switzerland, 107-114.

Liao, S., Chen, Y. J. and Deng, M. (2010) “Mining customer knowledge for tourism n-
ew product development and customer relationship management,” Expert Systems
with Applications, 37(6), 4212-4223.

Lin, K. C., Liao, I. E. and Chen, Z. S. (2011) “An improved frequent pattern growth metho-
d for mining association rules,” Expert Systems with Applications, 38(5), 5154-5161.

Park, J. S., Chen, M. S. and Yu, P. S. (1995) “An effective hash-based algorithm for m-
ining association rules,” In: Proceeding of the 1995 ACM-SIGMOD international
conference on management of data (SIGMOD’95), San Jose, CA, 175-186.

Petascale Data Storage Institute. (2007) “NERSC file system statistics,”World Wide W-
eb electronic publication, Online, Available: http://pdsi.nersc.gov/filesystem.htm.

Pramudiono, I. and Kitsuregawa, M. (2003) “Parallel FP-Growth on PC Cluster,” Adv-
ances in Knowledge Discovery and Data Mining, 2637, 467-473.

Silverstein, C., Brin, S., Motwani, R. and Ullman, J. (2000) “Scalable techniques for m-
ining causal structures,” Data Mining and Knowledge Discovery, 4(2-3), 163-192.

Tanbeer, S. K., Ahmed, C. F. and Jeong, B. S. (2009) “Parallel and distributed algorithms
for frequent pattern mining in large databases,” IETE Technical Review, 26(1), 55-65.

Tsay, Y. J., Hsu, T. J. and Yu, J. R. (2009) “HUT: A new method for mining frequent it-
emsets,” Information Sciences, 179(11), 1724-1737.

White, T. (2012) Hadoop: The Definitive Guide, 3rd ed., O'Reilly Media Inc, Sebasto-
pol, CA.

Zaïane, O. R., EI-Hajj, M. and Lu, P. (2001) “Fast parallel association rules mining wi-
thout candidacy generation,” In: Proceeding of the 2001 international conference
on data mining (ICDM’01), San Jose, CA, 665-668.

Zaki, M. J., Parthasarathy, S., Ogihara, M. and Li, W. (1997) “Parallel algorithm for discove-
ry of association rules,”Data Mining and Knowledge Discovery, 1(4), 343-373.

Zhou, L., Zhong, Z., Chang, J., Li, J., Huang, J. Z. and Feng, S. (2010) “Balanced par-
allel FP-Growth with MapReduce,” In: Proceeding of the 2010 IEEE Youth confer-
ence on information computing and telecommunications (YC-ICT’10), Beijing,
China, 243-246.


	IPFP:AnImprovedParallelFP-GrowthAlgorithmfor
	5Correspondingauthor:ZiliZhang,e-mail:
	Abstract
	1.Introduction
	2.IPFPalgorithmdescription
	3.IPFPalgorithmimplementation
	4.Experimentsandresults
	Inthissection,weverifythefeasibility,speedu
	TheexperimentalHadoopclusteriscomposedofone
	4.2.ValidityandefficiencyevaluationofIPFP
	Figure1.ThefeasibilityandspeedupofIPFP.
	6.Conclusions
	AcknowledgementsThisworkwassupportedbytheN
	References

