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Abstract 

 

The stability of the correlation matrices is noteworthy. Usually to testing stability of 

coorelation matrices used to statistics M Box, Jennrich and G. Its statistics However, 

M Box and G statistics as computation of matrix determinant and J statistic 

involves matrix inversion. The former needs the condition that all sample 

correlation matrices are positive definite which is not always satisfied in 

practice. This condition is not apt for high dimension data sets because its 

computational efficiency becomes low. To handle this obstacles, we proposed 

a new statistical test based on what we call vector variance of standardized 

variables (VVSV). The proposed test is constucted based on vector variance 

(VV).This is evidenced by several papers describing the correlation matrix, Vector 

variance of standardized variables sample used a statistical formula variance vector. 

In practice there are difficulties in the calculation to determine variance of Vector 

Variance of Sample Variance of Standardized Variables. In this paper, by utilizing 

the vec operator and properties of the matrix will be investigated alternative 

formulation of asymptotic variance of Vector Variance of Sample Variance of 

Standardized Variables. 
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1. Introduction 

The stability of correlation matrix is one of the most important problems in economic 

development and financial industry. We  can see in the literature that, since the last 

decade, that problem can be found in a wide spectrum of applications. Its applications 

in property, real estate and asset businesses can be seen, for example, in eichholtz 

(1995), Lee(1998), Cooka el al. (2002) and Fischer (2007). Other applications such as 

in equity market, global market and risk management are presented by Meric and 

meric (1997), Tang (1998), Gande and Parsley (2002), Annaert et al. (2003), Ragea 

(2003), Da costa et al. (2005) and Goetzmann et al. (2005), Michelle et al. (2010). We 

can also find its application in parallel computation of high dimensional robust 

correlation matrices in Chilson et al. (2006). 

 

Djauhari and Herdiani (2010) proposed a new statistical test based on what we call 

vector variance of standardized variables (VVSV). The proposed test is constucted 

based on vector variance (VV). The role of VV could be increasing the computational 

efficiency of fast minimum covariance determinant (FMCD) algorithm, Herwindiati 

et al. (2008). Let P be the correlation matrix of the population under studi. Vector 

Variance of Standardized Variable (VVSV) is the trace of the squared correlation 

matrix population, i.e.     22 PvecPTrVVSV  .  

 

In practice there are difficulties in calculating variance of vector variance of 

standardized variables. Therefore, in this paper we investigate about on asymptotic 



 

 

 

 

variance of vector variance of standardized variables. The rest of the paper is 

organized as follows. In section 2, we discuss on the Asymptotic Variance of Sample 

Vector Variance of Standardized Variables. Our approach will be based on the 

notions of vec operator and commutation matrix the problem formulation will be 

presented. Later on, in section 3, Additional remarks will close this paper. 

 

 

 

2.  Asymptotic Variance of Sample Vector Variance of Standardized Variables  

 

Let X is a random vector p dimension with definite positive covariance matrix . By 

using vec operator, see Muirhead (1982), El Maache and Lepage (1998), Schott 

(1997, 2007) and Djauhari (2007), vector variance (VV) of X is simply ‖   ( )‖ . It 
is a multivariate variability measure like Generalized Variance (GV). See Djauhari 

(2007) for an in depth discussion on VV and its asymtotic behavior. In what follows 

our attention will be focused on the case where all variables are standardized. 

 

Let Z be the random vector where its k-th component is the standardized version of 

the k-th component of X; k=1, 2, ...,p. The covariance matrix P of Z is the correlation 

matrix of X. We call the parameter ‖   ( )‖  vector variance of the standardized 

variables (VVSV). Now, let            be a random sample of size n from Z with 

covariance matrix P. If R is the sample correlation matrix, then we call ‖   ( )‖  

sample VVSV.  

 

Let  ⃗   ⃗     ⃗   be a random sample of size n from the distribution having 

covariance matrix P. If R be a sample correlation matrix then    ( ) is a 

representation of R in vector form. Neudecker (1996) and Schott (2007) wrote about 

asymptotic distribution of    ( ) as follows.  

 

Theorem 1 

 

Let  ⃗   ⃗     ⃗   be a random vector of size n from the distribution normal p-variat, 

 ⃗⃗⃗   ( ⃗  ) then  

                               √   {   ( )     ( )}
 
→   ( ⃗⃗  )    

Where : 

a.          ,     
 

 
(       ) 

b.     is commutation matrix of size       

c.   {    (    )  }(   ){      (    )} 

d.    ∑ ( ⃗  ⃗ 
   ⃗  ⃗ 

 )
 
   ,  ⃗  is i-th column of identity matrix    of size 

      
 

Value approximation of     ( ), as follows  

                ( )     (     
 

 
 (        ))    

        

It’s approximation will be used to find mean and variance of     ( ). Mean of vec(R) 

is    ( ) and variance of   Rvecvar      
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symmetry, see Schott (1997, p. 415 and 282), then  
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Therefore, 
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We can get, 

                                         (   ( ))  
 

   
                                 

Further, Let  ⃗   ⃗     ⃗   be a random sample of size n from the distribution having 

covariance matrix P. If R be a sample correlation matrix then    ( ) is a 

representation of R in vector form with dimension   . Thus, VVSV sample be a 

‖   ( )‖   or   (  )  It is number of elements diagonal matrix of   , namely  

                              (  )  ∑ ∑    
  

   
 
          

Asymptotic distribution of ‖   ( )‖    can be written as follows. 

 

Theorem 2 

If √   {   ( )     ( )}
 
→   ( ⃗⃗⃗  ) and (   ( )) (   ( ))  ‖   ( )‖   

then   ‖   ( )‖ 
 
→ (    ) , with mean   ‖   ( )‖   and variance     

 

   
(   ( ))      (   ( ))    

Where : 

   Population correlation matrix  

    Sample correlation matrix 

    Number of variable  

   
 

 
(       ) ,     be a commutation matrix with size       

  {    (    )  }(   ){      (    )}  

(Djauhari & Erna  2008) 

 

Formulation variance of VVSV was been caused difficultly to compute, therefore its 

need an alternative formulation by vec operator and commutation matrix to become 

simply. The result is written in theorem form, as follows.   

 

Proposition  

 

If      {(‖   ( )‖ )}  
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Proof: 
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Selanjutnya,  

karena         PPDDTrDvecPPDvec
ppp

t

p 2222   lihat persamaan (2.6) 

sehingga, 
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   dan       simetri maka     

  juga simetri sehingga 
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Akhirnya terbukti bahwa      
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3. Additional Remarks  

Alternative formulation of variance of VVVS is   
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