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Abstract

The covariate-specific receiver operating characteristic curve is frequently used to evaluate the
classification accuracy of a diagnostic test when it is associated with certain covariates. In this
paper, we proposed a new procedure for estimating this curve based on a reformulation of the
conventional location-scale model as well as the idea of composite quantile regression. Asymptotic
normality of the proposed estimators is established, both for the regression parameters and the
covariate-specific receiver operating characteristic curve at a fixed false positive point. Simulation
results show that the new estimators compare favorably to their main competitors in terms of the
standard error. We apply the new procedure to data from the national Alzheimer’s coordinating
center.
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1. Introduction

The receiver operating characteristic curve is a useful tool for evaluating the classification ability
of a medical diagnostic test when the test result is continuous [12, 14]. This curve plots the sensi-
tivity against 1 minus the specificity of a continuous test by first dichotomizing the test result with
a threshold and then varying the threshold over the real line. Mathematically, it equals S1{S−1

0 (t)}
for t ∈ [0, 1], where S1 and S0 denote the survival functions of the diseased and nondiseased popu-
lations, respectively.

In practice, besides the disease status and diagnostic test value, additional covariates, which
may influence the accuracy of the test, are often available. The covariate-specific receiver operat-
ing characteristic curve, denoted as Rx(t) throughout, provides a way to evaluating the effect of
covariates on the test accuracy; here x is a particular value of patient’s covariates.

There are mainly two approaches for modeling Rx(t) in the literature. The first is an indirect
procedure that has two steps. At step one, a disease-specific regression model is built to capture
the relationship between covariates and test results, then model parameters are estimated. At step
two, Rx(t) is estimated based on either an empirical or a nonparametric smoothing estimator of
the disease-specific survival function using fitted residuals obtained at step one. A location-scale
regression model is the most common form for the indirect method and has been widely used in
practice. See Pepe [9, 10, 12], Heagerty & Pepe [4], Faraggi [2], Zheng & Heagerty [13], González-
Manteiga et al. [3], and Liu & Zhou [8] for examples.

The second approach directly models Rx(t) itself. At the heart of this approach is the specifi-



cation of a model, which directly relates covariates to Rx(t). This method was first proposed by
Pepe [9, 11] with a parametric model and then Cai & Pepe [1] extended it semiparametrically by
allowing an arbitrary nonparametric baseline function.

Both approaches have advantages and disadvantages. The indirect method is rather flexible,
as it does not require the specification of a particular form for any of the disease-specific error
distributions. In general, the class of Rx(t) generated by the indirect model is larger than that
generated by the direct model. However, one disadvantage of the indirect model is the difficulty
with its regression parameter interpretation. For the direct approach, interpreting the regression
parameters is easy; yet the existing literature requires a known link function as well as a parametric
structure to characterizing covariate’s effect. More discussion of these methods may be found in
Zhou et al. [14].

In this paper, we focus on the two-step indirect regression method, for which Wedderburn [18]’s
quasilikelihood is frequently adopted for estimating the model parameters. This extends the least
squares method, and thus inherits all its drawbacks. For example, the quasilikelihood method
requires a moment assumption, and behaves badly when the data contain outliers.

Quantile regression has been widely used since the seminal work of Koenker & Bassett [6]. It is
attractive not only due to its robustness to non-Gaussian errors, but also because, by considering
several quantiles simultaneously, it provides a more complete picture of the conditional distribution
of the response. Zou & Yuan [15] further proposed a composite quantile regression technique to
combine information across different quantiles in a linear regression model. The asymptotic relative
efficiency of the composite quantile regression estimator in relation to the least squares estimator
for the regression parameters in a linear model is shown, under general conditions, to be bounded
below by 0.7. See Zou & Yuan [15] for details.

In contrast to mean regression techniques, composite quantile regression or even single quantile
regression has rarely been used in the analysis of Rx(t). Zheng & Heagerty [13] considered a
semiparametric estimator of time dependent receiver operating characteristic curves for longitudinal
markers. However, their work, as an extension of Heagerty & Pepe [4], only used the idea of the
quantile regression to estimate part of the receiver operating characteristic curve, and employed a
quasilikelihood method and spline expansion to estimate the location and scale functions.

Our contributions in this paper are three-fold. First, we introduce the composite quantile
regression technique to receiver operating characteristic curve regression under the framework of a
location-scale model. This includes general single quantile regression as its special case. Second, we
provide a reformulation of the conventional location-scale model, which not only looks much simpler
than the old one, but also facilitates the use of composite quantile regression. Third, we work out
the asymptotics of the proposed estimators both for the model parameters and the covariate-specific
receiver operating characteristic curve at a fixed false positive point. A key difference between our
model and that of Zou & Yuan [15] is that we permit the regression function to be nonlinear.
Consequently, the criterion function involved in our setup is not necessarily convex in parameters.
Thus, Zou & Yuan [15]’s method of proof cannot be used here. Instead, M-estimation ideas are
adopted to prove the asymptotic normality of our estimators.
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2. Methodology 2.1 Location-scale model

Let T , D and X be the continuous test result, the true disease status and the covariates available
for a subject, respectively. Let D = 1 denote a diseased subject and 0 a healthy subject. In
accordance with convention, we assume that larger values of T are more indicative of the disease.

Consider the location-scale model

T = µ̃(X, D,α) + Dσ1e1 + σ0(1−D)e0, (1)

where µ̃ is a known function, α is a p-dimensional parameter vector, σ1 and σ0 are unknown scale
parameters, e1 and e0 are disease-specific errors with mean zero and variance one that are both
independent of X. Under model (1), the receiver operating characteristic curve given X = x
is Rx(t) = s1[(σ0/σ1)s−1

0 (t) + σ−1
1 {µ̃(x, 0, α) − µ̃(x, 1, α)}], where s1 and s0 denote the survival

functions of e1 and e0, respectively.

Before introducing our estimators, we first provide a new formulation for model (1), which,
as a referee pointed out, works here because our primary interest is Rx(t) itself, while the model
parameters are nuisance parameters. The basic idea of the new formulation is to reorganize the
model so that no explicit assumptions are made on the errors except that they are independent of
covariates. This is accomplished by absorbing the scale parameters, and any additive component
that is either a constant or depends only on the disease status in the old location formulation,
into newly defined errors. The new formulation usually looks simpler than the old one and also
facilitates the use of composite quantile regression in estimating the model parameters.

To gain insight into the new formulation, we consider a linear location-scale model with one
scalar covariate X, that is, T = α1 + α2D + α3X + α4XD + Dσ1e1 + σ0(1 − D)e0. Decompose
α1 as Dα1 + (1 − D)α1 and write ε0 = α1 + σ0e0, ε1 = α1 + α2 + σ1e1. Hence one can rewrite
the preceding linear location-scale model as T = α3X + α4XD + Dε1 + (1−D)ε0, or equivalently,
T = β1X + β2XD + Dε1 + (1−D)ε0, where β1 = α3 and β2 = α4, and ε1 and ε0 are newly defined
disease-specific errors. Here, ε1 and ε0 are still independent of X. Clearly, the new formulation
is much simpler than the old one, because the parameter vector (α1, α2, σ1, σ0)T disappears in the
new framework; it is absorbed into the unspecified residuals ε1 and ε0.

Generally, model (1) can be reformulated as

T = µ(X, D, β) + Dε1 + (1−D)ε0, (2)

where β is a q-dimensional parameter vector, µ is a known function, and ε1 and ε0 are disease-
specific errors that are both independent of X and D. Under model (2), it follows that

Rx(t) = S1{S−1
0 (t) + µ(x, 0, β)− µ(x, 1, β)}

for a fixed covariate value X = x, where S0 and S1 denote the respective survival functions of ε0

and ε1. For the preceding linear model, Rx(t) equals s1{(σ0/σ1)s−1
0 (t)− (α2 + α4x)/σ1} under the

old framework and S1{S−1
0 (t)− β2x} under the new framework, respectively.

2.2 Estimation
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Now, we present the estimation method in more detail. Throughout, let K be a fixed positive
integer and τ1 < · · · < τK be K fixed points in (0, 1). Let {(Ti, Di, Xi) : i = 1, . . . , n} be n
independent copies of (T,D, X) that follows model (2). Further, let β∗ be the true value of β, and
for j = 0, 1, let b∗j1, . . . , b

∗
jK be the τ1, . . . , τK ’th quantiles of εj , respectively. Under model (2), the

τk’th quantile, for k = 1, . . . , K, of Ti given (Xi, Di) is µ(Xi, Di, β
∗)+Dib

∗
1k +(1−Di)b∗0k. Since the

different conditional quantiles share a common parameter β∗, we propose to estimate it by solving
the minimization problem

θ̂n = arg min
θ∈Θ

n∑

i=1

K∑

k=1

ρτk
{Ti − µi(β)−Dib1k − (1−Di)b0k} ,

where µi(β) = µ(Xi, Di, β), θ̂n = (β̂T
n , b̂T

1n, b̂T
0n)T , θ = (βT , bT

1 , bT
0 )T ∈ Θ = B × B1 × B0, B ⊂ Rq,

bj = (bj1, . . . , bjK)T ∈ Bj ⊂ RK for j = 0, 1, and ρτk
(x) = τkx − xI(x ≤ 0) are the check loss

functions, for k = 1, . . . , K.

With β̂n, we can define ε̂i = Di{Ti − µ(Xi, 1, β̂n)}+ (1−Di){Ti − µ(Xi, 0, β̂n)} for i = 1, . . . , n.
Based on the ε̂i’s, the empirical survival functions for S1 and S0 are Ŝ1(ε) = {∑n

i=1 Di}−1 ∑n
i=1 DiI(ε̂i >

ε) and Ŝ0(ε) = {∑n
i=1(1−Di)}−1 ∑n

i=1(1 − Di)I(ε̂i > ε), respectively. Define further Ŝ−1
0 (t) =

inf{y, Ŝ0(y) < t}. The proposed estimator for Rx(t) is

R̂x(t) = Ŝ1{Ŝ−1
0 (t) + µ(x, 0, β̂n)− µ(x, 1, β̂n)}. (3)

2.3 Asymptotic results

In this section, we present the main theoretical results. All the technical details are deferred to
the Appendix. Throughout the rest of the paper, we write π = pr(D = 1), c1K =

∑K
k=1 f1(b∗1k),

c0K =
∑K

k=1 f0(b∗0k), and cK = 1T
KΣ1K , where 1K denotes the K-vector of ones, Σ = (σkl)1≤k,l≤K

with σkl = τk ∧ τl − τkτl, for k, l = 1, . . . , K, and fj denotes the probability density function of εj ,
for j = 0, 1. Furthermore, we define µ1 = E{Dµ̇β(X, 1, β∗)}, µ0 = E{(1 −D)µ̇β(X, 0, β∗)}, C1 =
E[D{µ̇β(X, 1, β∗)}⊗2] and C0 = E[(1 − D){µ̇β(X, 0, β∗)}⊗2], where µ̇β = ∂µ/∂β, and a⊗2 = aaT

for a vector a.

We first summarize the key results. Theorem 1 indicates that the asymptotic covariance matrix
of n1/2(β̂n − β∗) has a sandwich form. This holds for n1/2(β̂LS

n − β∗), as described in Remark 1,
which also discusses the asymptotic relative efficiency of the two estimators. By Theorem 2, the
limiting distribution of n1/2{R̂x(t)−Rx(t)} depends on β̂n only through the asymptotic covariance
matrix of n1/2(β̂n − β∗). Inspection of the proof shows that a corresponding result holds for the
least squares type estimator. This facilitates an analytic efficiency comparison between these two
estimators. Theorem 3 shows that, for some location models, the least squares method and Pepe
[10]’s quasilikelihood method produce identical estimates for Rx(t). For a large class of models, the
proposed method is a competitive alternative to the quasilikelihood-based method for estimating
Rx(t). We assume that the following conditions hold:

Assumption 1 Write π = pr(D = 1), then 0 < π < 1.

Assumption 2 The parameter space Θ = B×B1×B0 ⊂ Rq+2K is compact, and the true value
θ∗ = (β∗, b∗1, b

∗
0) is an interior point of Θ.
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Assumption 3 For j = 0, 1, the distribution function Fj of εj is absolutely continuous, with
the continuous densities fj being uniformly bounded away from 0 and ∞ on each compact subset
of the interior of the support of fj .

Assumption 4 (i) The function µ(x, d, β) is continuous in (x, d) for each β, and is differentiable
at β∗ for each (x, d), with derivative µ̇β(x, d) such that the matrix E{µ̇β(X, D)⊗2} is positive defi-
nite. (ii) For every β1 and β2 in B, there exists a measurable function U(x, d) with E{U(X, D)2} <
∞, such that |µ(x, d, β1)−µ(x, d, β2)| ≤ U(x, d)‖β1− β2‖. (iii) There exist a constant k0 such that
for every β1 and β2 in B, the inequality [n−1

∑n
i=1{µ(Xi, Di, β1)−µ(Xi, Di, β2)}2]1/2 ≥ k0‖β1−β2‖

holds on a set Ωn such that pr(Ωn) → 1 as n tends to infinity. (iv) The class of functions
(y, x, d) 7→ I{y − µ(x, d, β) > ω}, for β and ω in some neighborhood of the associated true values,
is Donsker.

Theorem 1 Suppose that Assumptions 1–4 hold. Then the sequence n1/2(β̂n − β∗) is asymp-
totically normal with mean zero and covariance matrix Γ−1∆Γ−1, where Γ = c1K(C1 − π−1µ⊗2

1 ) +
c0K{C0 − (1− π)−1µ⊗2

0 } and ∆ = cK(C1 − π−1µ⊗2
1 ) + cK{C0 − (1− π)−1µ⊗2

0 }.
Theorem 2 Suppose that Assumptions 1–4 hold. Then, for each fixed t ∈ (0, 1), and a fixed

covariate value x, the sequence n1/2{R̂x(t)− Rx(t)} is asymptotically normal with mean zero and
variance

π−1S1(w∗){1− S1(w∗)}+
t(1− t)f2

1 (w∗)
(1− π)f2

0 {S−1
0 (t)} + f2

1 (w∗)∇T
x Γ−1∆Γ−1∇x,

where w∗ = S−1
0 (t) + µ(x, 0, β∗) − µ(x, 1, β∗), and ∇x = {µ̇β(x, 1, β∗)− µ̇β(x, 0, β∗)} − {π−1µ1 −

(1− π)−1µ0}.
Remark 1 Suppose that Assumptions 1, 2 and 4 hold, and additionally, the second moments

of ε1 and ε0 exist. Then, it can be shown that the sequence n1/2(β̂LS
n −β∗) is asymptotically normal

with mean zero and covariance matrix Γ̃−1∆̃Γ̃−1, where Γ̃ = (C1−π−1µ⊗2
1 )+{C0− (1−π)−1µ⊗2

0 },
and ∆̃ = σ2

1(C1 − π−1µ⊗2
1 ) + σ2

0{C0 − (1 − π)−1µ⊗2
0 }, with σ2

1 = var(ε1) and σ2
0 = var(ε0). In

particular, if ε1 and ε0 are identically distributed, then c1K = c0K , σ2
1 = σ2

0, and the asymptotic
relative efficiency of β̂n versus β̂LS

n is σ2
1c

2
1K/cK , which is independent of the specific location model,

and is larger than 0.7 for large enough K [15]. This suggests that, for a large class of models, the
proposed method provides a safe alternative to the least squares type method in terms of estimating
the regression parameters.

Theorem 3 If µ̃(x, d, α) in model (1) can be written as α1 + α2D + ν(zT α3), where z =
(xT , dxT )T , α3 is the last p− 2 components of α, and ν is a fixed continuously differentiable func-
tion, then the least squares type method and the quasilikelihood-based method produce identical
estimates for Rx(t) for each x and t ∈ (0, 1).
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