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Abstract

The single-index varying-coefficient models include many types of popu-
lar semiparametric models, i.e. single-index models, partially linear models,
varying-coefficient models, and so on. In this paper, we first establish the
semiparametric efficiency bound for the single-index varying-coefficient model,
and develop an estimation method based on the efficient estimating equations.
Although our main focus is more on homoscedastic models for simplicity, the
calculated efficiency bound and efficient estimating equations are for the more
general heteroscedastic models. It shows that the estimator of the finite di-
mensional parameter is

√
n consistent and asymptotically normal and attains

the semiparametric efficiency bound. Moreover, for the homoscedastic model,
a two-stage variable selection procedure is proposed to select the important
nonparametric components and parametric components. We also find that the
proposed procedures can divide the predictors into varying-coefficient predic-
tors and constant-coefficient predictors automatically. Some simulation studies
are conducted to evaluate and illustrate the proposed methods.
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1 Introduction

The varying-coefficient model has gained a lot of attentions during the past decade
which is an important generalization of the linear regression model. However, for
the varying-coefficient model

Y = α(U)>Z + ε, Z ∈ Rq, (1)

if the dimension of U is high, the “curse of dimensionality” problem will suffer.
This difficulty motivates us to study more flexible and more general models, the
single-index varying-coefficient model,

Y = g>(X>β)Z + ε, (2)



where X ∈ Rp and Z ∈ Rq are vectors of covariates, Y is the response variable, β is
a p× 1 vector of unknown parameters with its true value β0, g(·) is a q× 1 vector of
unknown function and ε is a random error with E(ε|X, Z) = 0 and V ar(ε|X, Z) =
σ2(X, Z). Xue and Wang (2012) studied this model and developed an adjusted
empirical likelihood ratio for constructing the confidence regions of parameters of
interest.

Model (2) includes many important statistical models as special cases. If g(·)
is a q × 1 constant vector, (2) turns to the linear regression model. If p = 1 and
β = 1, (2) reduces to the varying-coefficient model. Furthermore, if some elements
of g(X) are constants, it is the varying-coefficient partially linear model. If q = 1
and Z = 1, (2) reduces to the single-index model. If p = q and Z = X, (2) becomes
the adaptive varying-coefficient linear model. Therefore, it is meaningful to study
this semiparametric model.

For any given β, model (2) reduces to (1), and many methods have been devel-
oped to estimate the regression coefficients. However, more than to obtain a consis-
tent estimator, we would like to search for the efficient estimator of the parameter.
Semiparametric efficiency problem has been studied extensively in the literature.
Tsiatis (2006) gave a general introduction to semiparametric efficiency bound and
efficient estimators with a focus on missing data. Ma et al. (2006) considered the
heteroscedastic partially linear models, and utilized a weighted estimating equation
method to define an efficient semiparametric estimator for the parameter vector in
the linear part. Liang et al. (2010) studied the efficient estimators for the partially
linear single-index models. The discussions for semiparametric efficient estimators
also can be found in Firpo (2007); Chen et al. (2008), etc.

On the other hand, high-dimensionality is an important characteristic of many
modern data sets. Then an important problem is to select the significant variables
in the studied model. Most recently, variable selection using penalty functions for
nonparametric or semiparametric models have been developed. For example, Li and
Liang (2008) studied variable selection for varying-coefficient partially linear models,
where the parametric components were identified via the SCAD but the nonpara-
metric components were selected via a generalized likelihood ratio test. Wang and
Xia (2009) studied variable selection for varying-coefficient models, the nonparamet-
ric components were estimated and selected by the shrinkage method following the
group LASSO idea (Yuan and Lin (2006)) and kernel smoothing techniques. Huang
et al. (2010) studied variable selection for additive models, using the adaptive group
Lasso method with B-splines. Furthermore, in practice, some components of g(·) in
the single-index varying-coefficient model (2) are non-zero constants and, some are
zero constants and some other components are varying coefficients. This motivates
us to develop a data driven method to identify the true model.

2 Results

2.1 Efficient estimator for β

For the sake of identifiability, we assume ‖β‖ = 1 and the first component of β
is positive. We use the delete-one-component method proposed by Yu and Rup-
pert (2002). Let β = (β1, . . . , βp)> and β(1) = (β2, . . . , βp)>, then, we may write
β(β(1)) = ((1−‖β(1)‖2)1/2, β2, . . . , βp)>. Thus, the Jacobian matrix is Jβ(1) = ∂β

∂β(1) =



(b1, . . . , bp)>, where bs(1 < s ≤ p) is a (p−1)-dimensional unit vector with sth com-
ponent 1, and b1 = −(1 − ‖β(1)‖2)−1/2β(1). We can compute the efficient score
function Seff

β (Y, X,Z) and the semiparametric efficient bound of model (2).

Theorem 1 Assume that the conditional probability density function of ε given
(X, Z), p1(ε|X, Z), is differentiable with respect to ε and that 0 < E(ε2|X, Z) < ∞
almost everywhere, the semiparametric efficient score of model (2) is given by

Seff
β0

(Y, X,Z) = εw(X, Z)
{

g′>(X>β0)ZJ>
β

(1)
0

X − E
[
w(X, Z)g′>(X>β0)Z

×J>
β

(1)
0

XZ>|X>β0

]{
E[w(X, Z)ZZ>|X>β0]

}−1
Z

}
, (3)

where ε = Y − Z>g(X>β0) and w(X, Z) = {E(ε2|X, Z)}−1. Thus, the semipara-

metric efficiency bound of model (2) is
{
E(Seff

β0
Seff

β0

>
)
}−1.

Solving the efficient estimating equations based on the efficient score vector, we
can get the efficient estimators.

Theorem 2 Under some regularity conditions, we have

√
n(β̂ − β0)

D−→ N(0, J
β

(1)
0

Σ−1
1 J>

β
(1)
0

),

where Σ1 =
{
E(Seff

β0
Seff

β0

>
)
}
.

2.2 Variable selection procedures

Assume the number of significant variables in Z is q0, q0 ≤ q and the number of
varying coefficient components are d0, d0 ≤ q0. A further task of variable selection
reduces to identifying the nonzero varying coefficients and the nonzero constant
coefficients. The subscript set of nonzero components can be defined as A∗

g =
{1, . . . , q0}, and the subscript set of nonzero varying coefficients can be defined as
A∗

g′ = {1, . . . , d0}. Yuan and Lin (2006) used the group lasso penalty to identify zero
coefficients, Wang and Xia (2009) also used group lasso idea to select the important
varying coefficients for varying coefficient models. Thus, we propose the following
penalized estimator

ĜMλ
= (Ĝ>

λ , Ĝ′>
λ )> = argmin

GML∈R2q×n

Qλ(GML), (4)

where

Qλ(GML) = Q(GML) +
q∑

j=1

λ1j‖cj‖+
q∑

j=1

λ2j‖dj‖, (5)

Q(GML) =
n∑

j=1

n∑

i=1

[Yi − a>(tj)Zi − (hb(tj))>Zi(
X>

i β − tj
h

)]2Kh(X>
i β − tj)

aj = a(tj) = (a1(tj), . . . , aq(tj))>, hbj = hb(tj) = (hb1(tj), . . . , hbq(tj))>, j = 1, . . . , n,

ck = (ak(t1), ak(t2), . . . , ak(tn))>, dk = (bk(t1), bk(t2), . . . , bk(tn))>, k = 1, . . . , q,



λ1j and λ2j , j = 1, . . . , q, are different tuning parameters. Let φn = max{λ1j , 1 ≤
j ≤ q0}, φ′n = max{λ2j , 1 ≤ j ≤ q0}, ϕn = min{λ1j , q0 + 1 ≤ j ≤ q}, ϕ′n =
min{λ2j , q0+1 ≤ j ≤ q}, and ψn = min{λ2j , d0+1 ≤ j ≤ q0}. Let A∗

GM
= {A∗

g, q0+
A∗

g′}. η0A∗
GM

= (g1(t), . . . , gq0(t), hg′1(t), . . . , hg′d0
(t))>. Define Z∗ = (Z1, . . . , Zq0)

>

and Z∗∗ = (Z1, . . . , Zd0)
>.

Theorem 3 Under some regularity conditions, as h = Op(n−1/5), n−11/10φn → 0,
n−11/10φ′n → 0, n−11/10ϕn →∞, n−11/10ϕ′n →∞, and n−9/10ψn →∞, we have

(i). P
(
supt∈T ‖ĝλj(t)‖ = 0

) → 1 for any q0 < j ≤ q,

(ii). P
(
supt∈T ‖ĝ′λj(t)‖ = 0

) → 1 for any d0 < j ≤ q.

(iii).
√

nh
(
η̂λA∗

GM
(t)−η0A∗

GM
(t)− h2

2 [Σ∗2(t)]
−1

(
E(Z∗Z∗>|t)g′′A∗

g
(t)µ2f(t)

0

)) D−→

N(0, σ2Σ∗−1
2 (t)V ∗

1 Σ∗−1
2 (t)).

Thus, after the first stage, we define ĝ∗λ(t) = (ĝλ1(t), . . . , ĝλq0(t))
> and ĝ′∗λ (t) =

(ĝ′λ1(t), . . . , ĝ
′
λd0

(t), 0>q0−d0
)> be the penalized estimators. The penalized estimating

equation on β(1) can be constructed as

Uλn(β(1)) =
n∑

i=1

S̃eff
β (Yi, Xi, Z

∗
i )− nqλn(|β(1)|)sgn(β(1)). (6)

Denote Uλn(β(1)) = (Uλn2(β(1)), · · · , Uλnp(β(1)))>. We introduce a zero-crossing
penalized estimating equation defined in Johnson et al. (2008). Let β̂

(1)
λn

be a zero-
crossing to penalized estimating equation if , for j = 2, · · · , p,

lim
ε→0+

n−1Uλnj(β̂
(1)
λn

+ εej)Uλnj(β̂
(1)
λn
− εej) ≤ 0,

where ej is the jth canonical unit vector. Define the true nonzero components index
A∗

β = A∗
β(1) ∪ {1}, where A∗

β(1) = {2, . . . , p0}.

Theorem 4 Under some regularity conditions, if nh4 →∞, nh6 → 0, λn → 0 and√
nλn →∞, then the following results hold:

(i). There exists a zero-crossing β̂
(1)
λn

to Uλn(β(1)) that satisfies β̂
(1)
λn

= β
(1)
0 +

Op(n−1/2). There exists a zero-crossing estimator β̂
(1)
λn

= (β̂(1)>
λnA∗

β(1)
,0>)> of

Uλn(β(1)) satisfies UλnA∗
β̂(1)

(β̂(1)
λn

) = 0.

(ii). For any root-n consistent zero-crossing estimator of Uλn(β(1)), denoted by
β̂

(1)
λn

= (β̂λn2, . . . , β̂λnp)>, as n → ∞, with probability tending to 1, β̂λnk =
0, k = p0 + 1, . . . , p. Moreover, let β∗0 = (β01, β02, . . . , β0p0)

> and X∗ =
(X1, . . . , Xp0)

>, then

√
n(β̂∗λn

− β∗0) D−→ N(0, σ2J
β

(1)∗
0

Σ∗−1
3 J>

β
(1)∗
0

).



Table 1: Variable selection for Z

Number of selected Proportion of function g
n NS NST NV NVT NC NCT U-fit C-fit O-fit

oracle 4 4 2 2 2 2 0 1 0

100 4.300 4.000 2.000 2.000 2.300 2.000 0.000 0.700 0.300
(0.4830) (0.0000) (0.0000) (0.0000) (0.4830) (0.0000)

200 4.000 4.000 2.000 2.000 2.000 2.000 0.000 1.000 0.000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Table 2: Variable selection for X

Number of selected Proportion about β
n NS NST U-fit C-fit O-fit

oracle 3 3 0 1 0
100 3.200(0.4216) 3.000(0.000) 0.000 0.800 0.200
200 3.080(0.3253) 3.000(0.000) 0.000 0.930 0.070

3 Numerical example

Let {Yi, Xi, Zi; i = 1, · · · , n} be the i.i.d sample. Xi = (Xi1, · · · , Xip)> were gen-
erated from uniform distribution on [0, 1]p with independent components. Zi1 = 1
and (Zi2, · · · , Ziq)> follows a multivariate normal distribution with cov(Zij1 , Zij2) =
0.5|j1−j2| for 2 ≤ j1, j2 ≤ q. Let p = 8 and q = 8. Consider the model

Yi =
q∑

s=1

gs(X>
i β)Zi(s+1) + 0.5ei, (7)

where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)>/
√

15.25, g1(u) = 2 sin(2πu), g2(u) = exp(2u −
1), g3(u) = 4, g4(u) = 1.5 and gk(u) ≡ 0 for k = 5, · · · , 8, ei ∼ N(0, 1). Let n = 100
and n = 200. A total of 500 simulation replications were conducted for each example
setup.

To demonstrate the performance of the proposed procedure, we define the fol-
lowing criterions: NS shows the average number of variable selected; NST presents
the average number of selected that are truly nonzero; NV means the average num-
ber of varying-coefficient components selected; NVT denotes the average number
of varying-coefficient components selected that are truly nonzero and varying; NC
is the average number of nonzero constant components selected while NCT is the
average number of nonzero constant components selected which are truly nonzero
constant. To assess the performance of two-stage variable selection procedure, fol-
lowing Wang and Xia (2009) we use the relative estimation error (REE)

REEβ =

∑p
j=1 |β̂j − βj |∑p
j=1 |β̄j − βj |

, REEg =

∑n
i=1

∑q
j=1 |ĝj(X>

i β̂)− gj(X>
i β0)|∑n

i=1

∑q
j=1 |ḡj(X>

i β̄)− gj(X>
i β0)|

,

where β̄j , ḡj(·) are either the unpenalized estimators or the oracle estimators.



Table 3: Summary of Two Stages Procedure

Proportion of models REEβ REEg

n U-fit C-fit O-fit unpenalized estimate oracle estimate unpenalized estimate oracle estimate

100 0.000 0.600 0.400 0.3668(0.1372) 1.5578(0.5441) 0.3816(0.0354) 1.0713(0.0846)
200 0.000 0.930 0.070 0.3421(0.1181) 1.1346(0.3066) 0.4357(0.0412) 1.0028(0.0064)
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